
The Java Virtual Machine Specification
Release 1.0 Beta
DRAFT

 August 21, 1995

Please

Recycle

 1993, 1994, 1995 Sun Microsystems, Inc.
2550 Garcia Avenue, Mountain View, California 94043-1100 U.S.A.

All rights reserved. This BETA quality release and related documentation are protected by copyright and distributed under
licenses restricting its use, copying, distribution, and decompilation. No part of this release or related documentation may be
reproduced in any form by any means without prior written authorization of Sun and its licensors, if any.

Portions of this product may be derived from the UNIX® and Berkeley 4.3 BSD systems, licensed from UNIX System
Laboratories, Inc. and the University of California, respectively. Third-party font software in this release is protected by
copyright and licensed from Sun’s Font Suppliers.

RESTRICTED RIGHTS LEGEND: Use, duplication, or disclosure by the United States Government is subject to the restrictions
set forth in DFARS 252.227-7013 (c)(1)(ii) and FAR 52.227-19.

The release described in this manual may be protected by one or more U.S. patents, foreign patents, or pending applications.

TRADEMARKS
Sun, Sun Microsystems, Sun Microsystems Computer Corporation, the Sun logo, the Sun Microsystems Computer
Corporation logo, WebRunner, Java, FirstPerson and the FirstPerson logo and agent are trademarks or registered trademarks
of Sun Microsystems, Inc. The "Duke" character is a trademark of Sun Microsystems, Inc. and Copyright (c) 1992-1995 Sun
Microsystems, Inc. All Rights Reserved. UNIX® is a registered trademark in the United States and other countries, exclusively
licensed through X/Open Comapny, Ltd. OPEN LOOK is a registered trademark of Novell, Inc. All other product names
mentioned herein are the trademarks of their respective owners.

All SPARC trademarks, including the SCD Compliant Logo, are trademarks or registered trademarks of SPARC International,
Inc. SPARCstation, SPARCserver, SPARCengine, SPARCworks, and SPARCompiler are licensed exclusively to Sun
Microsystems, Inc. Products bearing SPARC trademarks are based upon an architecture developed by Sun Microsystems, Inc.

The OPEN LOOK® and Sun™ Graphical User Interfaces were developed by Sun Microsystems, Inc. for its users and licensees.
Sun acknowledges the pioneering efforts of Xerox in researching and developing the concept of visual or graphical user
interfaces for the computer industry. Sun holds a non-exclusive license from Xerox to the Xerox Graphical User Interface,
which license also covers Sun’s licensees who implement OPEN LOOK GUIs and otherwise comply with Sun’s written license
agreements.

X Window System is a trademark and product of the Massachusetts Institute of Technology.

THIS PUBLICATION IS PROVIDED “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A
PARTICULAR PURPOSE, OR NON-INFRINGEMENT.

THIS PUBLICATION COULD INCLUDE TECHNICAL INACCURACIES OR TYPOGRAPHICAL ERRORS. CHANGES ARE
PERIODICALLY ADDED TO THE INFORMATION HEREIN; THESE CHANGES WILL BE INCORPORATED IN NEW
EDITIONS OF THE PUBLICATION. SUN MICROSYSTEMS, INC. MAY MAKE IMPROVEMENTS AND/OR CHANGES IN
THE PRODUCT(S) AND/OR THE PROGRAM(S) DESCRIBED IN THIS PUBLICATION AT ANY TIME.

August 22, 1995 Java Virtual Machine Specification 3

Contents

Preface . 5

Chapter 1: Java Virtual Machine Architecture. 7
1.1 Supported Data Types . 7
1.2 Registers . 7
1.3 Local Variables. 8
1.4 The Operand Stack . 8
1.5 Execution Environment . 8
1.6 Garbage Collected Heap . 9
1.7 Method Area . 10
1.8 The Java Instruction Set . 10
1.9 Limitations . 10

Chapter 2: Class File Format . 11
2.1 Format. 11
2.2 Signatures . 13
2.3 Constant Pool. 15
2.4 Fields . 19
2.5 Methods . 19
2.6 Attributes . 20

Chapter 3: The Virtual Machine Instruction Set. 27
3.1 Format for the Instructions . 27
3.2 Pushing Constants onto the Stack. 27
3.3 Loading Local Variables Onto the Stack . 30
3.4 Storing Stack Values into Local Variables . 33
3.5 Wider index for Loading, Storing and Incrementing 35
3.6 Managing Arrays . 36
3.7 Stack Instructions . 42
3.8 Arithmetic Instructions . 44
3.9 Logical Instructions. 50
3.10 Conversion Operations. 52
3.11 Control Transfer Instructions . 56
3.12 Function Return. 63
3.13 Table Jumping . 65
3.14 Manipulating Object Fields . 66
3.15 Method Invocation . 68
3.16 Exception Handling . 70
3.17 Miscellaneous Object Operations . 71
3.18 Monitors . 72

4 Java Virtual Machine Specification August 22, 1995

Appendix A: An Optimization. 73
A.1 Constant Pool Resolution . 73
A.2 Pushing Constants onto the Stack (_quick variants). 74
A.3 Managing Arrays (_quick variants). 75
A.4 Manipulating Object Fields (_quick variants) . 76
A.5 Method Invocation (_quick variants) . 78
A.6 Miscellaneous Object Operations (_quick variants) 80

Index of Instructions . 83

August 22, 1995 Java Virtual Machine Specification 5

Preface

This document describes version 1.0 of the Java Virtual Machine and its instruction set. We have written this
document to act as a specification for both compiler writers, who wish to target the machine, and as a
specification for others who may wish to implement a compliant Java Virtual Machine.

The Java Virtual Machine is an imaginary machine that is implemented by emulating it in software on a real
machine. Code for the Java Virtual Machine is stored in .class files, each of which contains the code for at
most one public class.

Simple and efficient emulations of the Java Virtual Machine are possible because the machine’s format is
compact and efficient bytecodes. Implementations whose native code speed approximates that of compiled C
are also possible, by translating the bytecodes to machine code, although Sun has not released such
implementations at this time.

The rest of this document is structured as follows:

• Chapter 1 describes the architecture of the Java Virtual Machine.

• Chapter 2 describes the .class file format.

• Chapter 3 describes the bytecodes.

• Appendix A contains some instructions generated internally by Sun’s implementation of the Java
Virtual Machine. While not strictly part of the specification we describe these here so that this
specification can serve as a reference for our implementation. As more implementations of the Java
Virtual Machine become available, we may remove Appendix A from future releases.

Sun will license the Java Virtual Machine trademark and logo for use with compliant implementations of this
specification. If you are considering constructing your own implementation of the Java Virtual Machine please
contact us, at the email address below, so that we can work together to insure 100% compatiblity of your
implementation.

Send comments on this specification or questions about implementing the Java Virtual Machine to our
electronic mail address: java@java.sun.com.

6 Java Virtual Machine Specification August 22, 1995

August 22, 1995 Java Virtual Machine Specification 7

1 Java Virtual Machine Architecture

1.1 Supported Data Types

The virtual machine data types include the basic data types of the Java language:

byte // 1-byte signed 2’s complement integer
short // 2-byte signed 2’s complement integer
int // 4-byte signed 2’s complement integer
long // 8-byte signed 2’s complement integer
float // 4-byte IEEE 754 single-precision float
double // 8-byte IEEE 754 double-precision float
char // 2-byte unsigned Unicode character

Nearly all Java type checking is done at compile time. Data of the primitive types shown above need not be
tagged by the hardware to allow execution of Java. Instead, the bytecodes that operate on primitive values
indicate the types of the operands so that, for example, the iadd, ladd, fadd, and dadd instructions each add
two numbers, whose types are int, long, float, and double, respectively

The virtual machine doesn’t have separate instructions for boolean types. Intead, integer instructions,
including integer returns, are used to operate on boolean values; byte arrays are used for arrays of
boolean.

The virtual machine specifies that floating point be done in IEEE 754 format, with support for gradual
underflow. Older computer architectures that do not have support for IEEE format may run Java numeric
programs very slowly.

Other virtual machine data types include:

object // 4-byte reference to a Java object
returnAddress // 4 bytes, used with jsr/ret/jsr_w/ret_w instructions

Note: Java arrays are treated as objects.

This specification does not require any particular internal structure for objects. In our implementation an
object reference is to a handle, which is a pair of pointers: one to a method table for the object, and the other to
the data allocated for the object. Other implementations may use inline caching, rather than method table
dispatch; such methods are likely to be faster on hardware that is emerging between now and the year 2000.

Programs represented by Java Virtual Machine bytecodes are expected to maintain proper type discipline and
an implementation may refuse to execute a bytecode program that appears to violate such type discipline.

While the Java Virtual Machines would appear to be limited by the bytecode definition to running on a 32-bit
address space machine, it is possible to build a version of the Java Virtual Machine that automatically
translates the bytecodes into a 64-bit form. A description of this transformation is beyond the scope of this
specification.

1.2 Registers

At any point the virtual machine is executing the code of a single method, and the pc register contains the
address of the next bytecode to be executed.

Each method has memory space allocated for it to hold:

• a set of local variables, referenced by a vars register,

• an operand stack, referenced by an optop register, and

• a execution environment structure, referenced by a frame register.

All of this space can be allocated at once, since the size of the local variables and operand stack are known at
compile time, and the size of the execution environment structure is well-known to the interpreter.

All of these registers are 32 bits wide.

8 Java Virtual Machine Specification August 7, 1995

1.3 Local Variables

Each Java method uses a fixed-sized set of local variables. They are addressed as word offsets from the vars
register. Local variables are all 32 bits wide.

Long integers and double precision floats are considered to take up two local variables but are addressed by
the index of the first local variable. (For example, a local variable with index n containing a double precision
float actually occupies storage at indices n and n+1.) The virtual machine specification does not require 64-bit
values in local variables to be 64-bit aligned. Implementors are free to decide the appropriate way to divide
long integers and double precision floats into two words.

Instructions are provided to load the values of local variables onto the operand stack and store values from the
operand stack into local variables.

1.4 The Operand Stack

The machine instructions all take operands from an operand stack, operate on them, and return results to the
stack. We chose a stack organization so that it would be easy to emulate the machine efficiently on machines
with few or irregular registers such as the Intel 486.

The operand stack is 32 bits wide. It is used to pass parameters to methods and receive method results, as well
as to supply parameters for operations and save operation results.

For example, the iadd instruction adds two integers together. It expects that the integers to be added are the
top two words on the operand stack, pushed there by previous instructions. Both integers are popped from the
stack, added, and their sum pushed back onto the operand stack. Subcomputations may be nested on the
operand stack, and result in a single operand that can be used by the nesting computation.

Each primitive data type has specialized instructions that know how to operate on operands of that type. Each
operand requires a single location on the stack, except for long and double, which require two locations.

Operands must be operated on by operators appropriate to their type. It is illegal, for example, to push two
ints and then treat them as a long. This restriction is enforced, in the Sun implementation, by the bytecode
verifier. However, a small number of operations (the dup opcodes and swap) operate on runtime data areas as
raw values of a given width without regard to type.

In our description of the virtual machine instructions below, the effect of an instruction’s execution on the
operand stack is represented textually, with the stack growing from left to right, and each 32-bit word
separately represented. Thus:

Stack: ..., value1, value2 ⇒ ..., value3

shows an operation that begins by having value2 on top of the stack with value1 just beneath it. As a result of
the execution of the instruction, value1 and value2 are popped from the stack and replaced by value3, which has
been calculated by the instruction. The remainder of the stack, represented by an ellipsis, is unaffected by the
instruction’s execution.

The types long and double take two 32-bit words on the operand stack:

Stack: ... ⇒ ..., value-word1, value-word2

This specification does not say how the two words are selected from the 64-bit long or double value; it is
only necessary that a particular implementation be internally consistent.

1.5 Execution Environment

The information contained in the execution environment is used to do dynamic linking, normal method
returns, and exception propagation.

1.5.1 Dynamic Linking

The execution environment contains references to the interpreter symbol table for the current method and
current class, in support of dynamic linking of the method code. The class file code for a method refers to
methods to be called and variables to be accessed symbolically. Dynamic linking translates these symbolic

August 22, 1995 Java Virtual Machine Specification 9

method calls into actual method calls, loading classes as necessary to resolve as-yet-undefined symbols, and
translates variable accesses into appropriate offsets in storage structures associated with the runtime location
of these variables.

This late binding of the methods and variables makes changes in other classes that a method uses less likely to
break this code.

1.5.2 Normal Method Returns

If execution of the current method completes normally, then a value is returned to the calling method. This
occurs when the calling method executes a return instruction appropriate to the return type.

The execution environment is used in this case to restore the registers of the caller, with the program counter of
the caller appropriately incremented to skip the method call instruction. Execution then continues in the
calling method’s execution environment.

1.5.3 Exception and Error Propagation

An exceptional condition, known in Java as an Error or Exception, which are subclasses of Throwable,
may arise in a program because of:

• a dynamic linkage failure, such as a failure to find a needed class file,

• a run-time error, such as a reference through a null pointer,

• an asynchronous event, such as is thrown by Thread.stop, from another thread,

• the program using a throw statement.

When an exception occurs:

• A list of catch clauses associated with the current method is examined. Each catch clause describes
the instruction range for which it is active, describes the type of exception that it is to handle, and
has the address of the code to handle it.

• An exception matches a catch clause if the instruction that caused the exception is in the
appropriate instruction range, and the exception type is a subtype of the type of exception that the
catch clause handles. If a matching catch clause is found, the system branches to the specified
handler. If no handler is found, the process is repeated until all the nested catch clauses of the
current method have been exhausted.

• The order of the catch clauses in the list is important. The virtual machine execution continues at
the first matching catch clause. Because Java code is structured, it is always possible to sort all the
exception handlers for one method into a single list that, for any possible program counter value,
can be searched in linear order to find the proper (innermost containing applicable) exception
handler for an exception occuring at that program counter value.

• If there is no matching catch clause then the current method is said to have as its outcome the
uncaught exception. The execution state of the method that called this method is restored from the
execution environment, and the propagation of the exception continues, as though the exception
had just occurred in this caller.

1.5.4 Additional Information

The execution environment may be extended with additional implementation-specific information, such as
debugging information.

1.6 Garbage Collected Heap

The Java heap is the runtime data area from which class instances (objects) are allocated. The Java language is
designed to be garbage collected — it does not give the programmer the ability to deallocate objects explicitly.
Java does not presuppose any particular kind of garbage collection; various algorithms may be used
depending on system requirements.

10 Java Virtual Machine Specification August 7, 1995

1.7 Method Area

The method area is analogous to the store for compiled code in conventional languages or the text segment in
a UNIX process. It stores method code (compiled Java code) and symbol tables. In the current Java
implementation, method code is not part of the garbage-collected heap, although this is planned for a future
release.

1.8 The Java Instruction Set

An instruction in the Java instruction set consists of a one-byte opcode specifying the operation to be
performed, and zero or more operands supplying parameters or data that will be used by the operation. Many
instructions have no operands and consist only of an opcode.

The inner loop of the virtual machine execution is effectively:

do {
 fetch an opcode byte
 execute an action depending on the value of the opcode
} while (there is more to do);

The number and size of the additional operands is determined by the opcode. If an additional operand is more
than one byte in size, then it is stored in big-endian order — high order byte first. For example, a 16-bit
parameter is stored as two bytes whose value is:

first_byte * 256 + second_byte

The bytecode instruction stream is only byte-aligned, with the exception being the tableswitch and
lookupswitch instructions, which force alignment to a 4-byte boundary within their instructions.

These decisions keep the virtual machine code for a compiled Java program compact and reflect a conscious
bias in favor of compactness at some possible cost in performance.

1.9 Limitations

The per-class constant pool has a maximum of 65535 entries. This acts as an internal limit on the total
complexity of a single class.

The amount of code per method is limited to 65535 bytes by the sizes of the indices in the code in the exception
table, the line number table, and the local variable table. This may be fixed for 1.0beta2.

Besides this limit, the only other limitation of note is that the number of words of arguments in a method call is
limited to 255.

August 22, 1995 Java Virtual Machine Specification 11

2 Class File Format

This chapter documents the Java class (.class) file format.

Each class file contains the compiled version of either a Java class or a Java interface. Compliant Java
interpreters must be capable of dealing with all class files that conform to the following specification.

A Java class file consists of a stream of 8-bit bytes. All 16-bit and 32-bit quantities are constructed by reading in
two or four 8-bit bytes, respectively. The bytes are joined together in network (big-endian) order, where the
high bytes come first. This format is supported by the Java java.io.DataInput and
java.io.DataOutput interfaces, and classes such as java.io.DataInputStream and
java.io.DataOutputStream.

The class file format is described here using a structure notation. Successive fields in the structure appear in
the external representation without padding or alignment. Variable size arrays, often of variable sized
elements are called tables and are commonplace in these structures.

The types u1, u2, and u4 mean an unsigned one-, two-, or four-byte quantity, respectively, which are read by
method such as readUnsignedByte, readUnsignedShort and readInt of the java.io.DataInput
interface.

2.1 Format

The following pseudo-structure gives a top-level description of the format of a class file:

ClassFile {
u4 magic;
u2 minor_version;
u2 major_version;
u2 constant_pool_count;
cp_info constant_pool[constant_pool_count - 1];
u2 access_flags;
u2 this_class;
u2 super_class;
u2 interfaces_count;
u2 interfaces[interfaces_count];
u2 fields_count;
field_info fields[fields_count];
u2 methods_count;
method_info methods[methods_count];
u2 attributes_count;
attribute_info attributes[attribute_count];

}

magic

This field must have the value 0xCAFEBABE.

minor_version, major_version

These fields contain the version number of the Java compiler that produced this class file. An
implementation of the virtual machine will normally support some range of minor version
numbers 0-n of a particular major version number. If the minor version number is

12 Java Virtual Machine Specification August 22, 1995

incremented the new code won’t run on the old virtual machines, but it is possible to make a
new virtual machine which can run versions up to n+1.

A change of the major version number indicates a major incompatible change, one that
requires a different virtual machine that may not support the old major version in any way.

The current major version number is 45; the current minor version number is 3.

constant_pool_count

This field indicates the number of entries in the constant pool in the class file.

constant_pool

The constant pool is an table of values. These values are the various string constants, class
names, field names, and others that are referred to by the class structure or by the code.

constant_pool[0] is always unused by the compiler, and may be used by an
implementation for any purpose.

Each of the constant_pool entries 1 through constant_pool_count-1 is a variable-
length entry, whose format is given by the first ‘‘tag’’ byte, as described in section 2.3.

access_flags

This field contains a mask of up to sixteen modifiers used with class, method, and field
declarations. The same encoding is used on similar fields in field_info and
method_info as described below. Here is the encoding:

this_class

This field is an index into the constant pool; constant_pool[this_class] must be a
CONSTANT_class.

Flag Name Value Meaning Used By

ACC_PUBLIC 0x0001 Visible to everyone Class, Method, Variable

ACC_PRIVATE 0x0002 Visible only to the defining class Method, Variable

ACC_PROTECTED 0x0004 Visible to subclasses Method, Variable

ACC_STATIC 0x0008 Variable or method is static Method, Variable

ACC_FINAL 0x0010 No further subclassing, overriding,
or assignment after initialization

Class, Method, Variable

ACC_SYNCHRONIZED 0x0020 Wrap use in monitor lock Method

ACC_VOLATILE 0x0040 Can’t cache Variable

ACC_TRANSIENT 0x0080 Not to be written or read by a per-
sistent object manager

Variable

ACC_NATIVE 0x0100 Implemented in a language other
than Java

Method

ACC_INTERFACE 0x0200 Is an interface Class

ACC_ABSTRACT 0x0400 No body provided Class, Method

August 22, 1995 Java Virtual Machine Specification 13

super_class

This field is an index into the constant pool. If the value of super_class is nonzero, then
constant_pool[super_class] must be a class, and gives the index of this class’s
superclass in the constant pool.

If the value of super_class is zero, then the class being defined must be
java.lang.Object, and it has no superclass.

interfaces_count

This field gives the number of interfaces that this class implements.

interfaces

Each value in this table is an index into the constant pool. If an table value is nonzero
(interfaces[i] != 0, where 0 <= i < interfaces_count), then
constant_pool[interfaces[i]] must be an interface that this class implements.

Question: How could one of these entries ever be 0?

fields_count

This field gives the number of instance variables, both static and dynamic, defined by this
class. The fields table includes only those variables that are defined explicitly by this class.
It does not include those instance variables that are accessible from this class but are inherited
from superclasses.

fields

Each value in this table is a more complete description of a field in the class. See section 2.4 for
more information on the field_info structure.

methods_count

This field indicates the number of methods, both static and dynamic, defined by this class.
This table only includes those methods that are explicitly defined by this class. It does not
include inherited methods.

methods

Each value in this table is a more complete description of a method in the class. See section 2.5
for more information on the method_info structure.

attributes_count

This field indicates the number of additional attributes about this class.

attributes

A class can have any number of optional attributes associated with it. Currently, the only class
attribute recognized is the “SourceFile” attribute, which indicates the name of the source file
from which this class file was compiled. See section 2.6 for more information on the
attribute_info structure.

2.2 Signatures

A signature is a string representing a type of a method, field or array.

14 Java Virtual Machine Specification August 22, 1995

The field signature represents the value of an argument to a function or the value of a variable. It is a series of
bytes generated by the following grammar:

<field_signature> ::= <field_type>

<field_type> ::= <base_type>|<object_type>|<array_type>

<base_type> ::= B|C|D|F|I|J|S|Z

<object_type> ::= L<fullclassname>;

<array_type> ::= [<optional_size><field_type>

<optional_size> ::= [0-9]*

The meaning of the base types is as follows:

B byte signed byte
C char character
D double double precision IEEE float
F float single precision IEEE float
I int integer
J long long integer
L<fullclassname>; ... an object of the given class
S short signed short
Z boolean true or false
[<field sig> ... array

A return-type signature represents the return value from a method. It is a series of bytes in the following
grammar:

<return_signature> ::= <field_type> | V

The character V indicates that the method returns no value. Otherwise, the signature indicates the type of the
return value.

An argument signature represents an argument passed to a method:

<argument_signature> ::= <field_type>

A method signature represents the arguments that the method expects, and the value that it returns.

<method_signature> ::= (<arguments_signature>) <return_signature>

<arguments_signature>::= <argument_signature>*

August 22, 1995 Java Virtual Machine Specification 15

2.3 Constant Pool

Each item in the constant pool begins with a 1-byte tag:. The table below lists the valid tags and their values.

Each tag byte is then followed by one or more bytes giving more information about the specific constant.

2.3.1 CONSTANT_Class

CONSTANT_Class is used to represent a class or an interface.

CONSTANT_Class_info {
u1 tag;
u2 name_index;

}

tag

The tag will have the value CONSTANT_Class

name_index

constant_pool[name_index] is a CONSTANT_Utf8 giving the string name of the class.

Because arrays are objects, the opcodes anewarray and multianewarray can reference array “classes” via
CONSTANT_Class items in the constant pool. In this case, the name of the class is its signature. For example,
the class name for

int[][]
is

[[I

The class name for

Thread[]
is

"[Ljava.lang.Thread;"

2.3.2 CONSTANT_{Fieldref,Methodref,InterfaceMethodref}

Fields, methods, and interface methods are represented by similar structures.

Constant Type Value

CONSTANT_Class
CONSTANT_Fieldref
CONSTANT_Methodref
CONSTANT_InterfaceMethodref
CONSTANT_String
CONSTANT_Integer
CONSTANT_Float
CONSTANT_Long
CONSTANT_Double
CONSTANT_NameAndType
CONSTANT_Utf8
CONSTANT_Unicode

7
9
10
11
8
3
4
5
6
12
1
2

16 Java Virtual Machine Specification August 22, 1995

CONSTANT_Fieldref_info {
u1 tag;
u2 class_index;
u2 name_and_type_index;

}

CONSTANT_Methodref_info {
u1 tag;
u2 class_index;
u2 name_and_type_index;

}

CONSTANT_InterfaceMethodref_info {
u1 tag;
u2 class_index;
u2 name_and_type_index;

}

tag

The tag will have the value CONSTANT_Fieldref, CONSTANT_Methodref, or
CONSTANT_InterfaceMethodref.

class_index

constant_pool[class_index] will be an entry of type CONSTANT_Class giving the
name of the class or interface containing the field or method.

For CONSTANT_Fieldref and CONSTANT_Methodref, the CONSTANT_Class item must be
an actual class. For CONSTANT_InterfaceMethodref, the item must be an interface which
purports to implement the given method.

name_and_type_index

constant_pool[name_and_type_index] will be an entry of type
CONSTANT_NameAndType. This constant pool entry indicates the name and signature of the
field or method.

2.3.3 CONSTANT_String

CONSTANT_String is used to represent constant objects of the built-in type String.

CONSTANT_String_info {
u1 tag;
u2 string_index;

}

tag

The tag will have the value CONSTANT_String

string_index

constant_pool[string_index] is a CONSTANT_Utf8 string giving the value to which
the String object is initialized.

2.3.4 CONSTANT_Integer and CONSTANT_Float

CONSTANT_Integer and CONSTANT_Float represent four-byte constants.

August 22, 1995 Java Virtual Machine Specification 17

CONSTANT_Integer_info {
u1 tag;
u4 bytes;

}

CONSTANT_Float_info {
u1 tag;
u4 bytes;

}

tag

The tag will have the value CONSTANT_Integer or CONSTANT_Float

bytes

For integers, the four bytes are the integer value. For floats, they are the IEEE 754 standard
representation of the floating point value. These bytes are in network (high byte first) order.

2.3.5 CONSTANT_Long and CONSTANT_Double

CONSTANT_Long and CONSTANT_Double represent eight-byte constants.

CONSTANT_Long_info {
u1 tag;
u4 high_bytes;
u4 low_bytes;

}

CONSTANT_Double_info {
u1 tag;
u4 high_bytes;
u4 low_bytes;

}

All eight-byte constants take up two spots in the constant pool. If this is the nth item in the constant pool, then
the next item will be numbered n+2.

tag

The tag will have the value CONSTANT_Long or CONSTANT_Double.

high_bytes, low_bytes

For CONSTANT_Long, the 64-bit value is (high_bytes << 32) + low_bytes.

For CONSTANT_Double, the 64-bit value, high_bytes and low_bytes together represent
the standard IEEE 754 representation of the double-precision floating point number.

2.3.6 CONSTANT_NameAndType

CONSTANT_NameAndType is used to represent a field or method, without indicating which class it belongs to.

CONSTANT_NameAndType_info {
u1 tag;
u2 name_index;
u2 signature_index;

}

tag

The tag will have the value CONSTANT_NameAndType.

18 Java Virtual Machine Specification August 22, 1995

name_index

constant_pool[name_index] is a CONSTANT_Utf8 string giving the name of the field
or method.

signature_index

constant_pool[signature_index] is a CONSTANT_Utf8 string giving the signature
of the field or method.

2.3.7 CONSTANT_Utf8 and CONSTANT_Unicode

CONSTANT_Utf8 and CONSTANT_Unicode are used to represent constant string values.

CONSTANT_Utf8 strings are “encoded” so that strings containing only non-null ASCII characters, can be
represented using only one byte per character, but characters of up to 16 bits can be represented:

All characters in the range 0x0001 to 0x007F are represented by a single byte:

+-+-+-+-+-+-+-+-+
|0|7bits of data|
+-+-+-+-+-+-+-+-+

The null character (0x0000) and characters in the range 0x0080 to 0x07FF are represented by a pair of two bytes:

+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+
|1|1|0| 5 bits† | |1|0| 6 bits |
+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+

Characters in the range 0x0800 to 0xFFFF are represented by three bytes:

+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+
|1|1|1|0|4 bits | |1|0| 6 bits | |1|0| 6 bits |
+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+

There are two differences between this format and the “standard” UTF-8 format. First, the null byte (0x00) is
encoded in two-byte format rather than one-byte, so that our strings never have embedded nulls. Second, only
the one-byte, two-byte, and three-byte formats are used. We do not recognize the longer formats.

CONSTANT_Utf8_info {
u1 tag;
u2 length;
u1 bytes[length];

}

CONSTANT_Unicode_info {
u1 tag;
u2 length;
u2 bytes[length];

}

tag

The tag will have the value CONSTANT_Utf8 or CONSTANT_Unicode.

length

The number of bytes in the string. These strings are not null terminated.

bytes

The actual bytes of the string.

August 22, 1995 Java Virtual Machine Specification 19

2.4 Fields

The information for each field immediately follows the field_count field in the class file. Each field is described
by a variable length field_info structure. The format of this structure is as follows:

field_info {
u2 access_flags;
u2 name_index;
u2 signature_index;
u2 attributes_count;
attribute_info attributes[attribute_count];

}

access_flags

This is a set of sixteen flags used by classes, methods, and fields to describe various properties
and how they many be accessed by methods in other classes. See the table “Access Flags” on
page 12 which indicates the meaning of the bits in this field.

The possible fields that can be set for a field are ACC_PUBLIC, ACC_PRIVATE,
ACC_PROTECTED, ACC_STATIC, ACC_FINAL, ACC_VOLATILE, and ACC_TRANSIENT.

At most one of ACC_PUBLIC, ACC_PROTECTED, and ACC_PRIVATE can be set for any
method.

name_index

constant_pool[name_index] is a CONSTANT_Utf8 string which is the name of the
field.

signature_index

constant_pool[signature_index] is a CONSTANT_Utf8 string which is the signature
of the field. See the section “Signatures” for more information on signatures.

attributes_count

This value indicates the number of additional attributes about this field.

attributes

A field can have any number of optional attributes associated with it. Currently, the only field
attribute recognized is the “ConstantValue” attribute, which indicates that this field is a static
numeric constant, and indicates the constant value of that field.

Any other attributes are skipped.

2.5 Methods

The information for each method immediately follows the method_count field in the class file. Each method
is described by a variable length method_info structure. The structure has the following format:

20 Java Virtual Machine Specification August 22, 1995

method_info {
u2 access_flags;
u2 name_index;
u2 signature_index;
u2 attributes_count;
attribute_info attributes[attribute_count];

}

access_flags

This is a set of sixteen flags used by classes, methods, and fields to describe various properties
and how they many be accessed by methods in other classes. See the table “Access Flags” on
page 12 which gives the various bits in this field.

The possible fields that can be set for a method are ACC_PUBLIC, ACC_PRIVATE,
ACC_PROTECTED, ACC_STATIC, ACC_FINAL, ACC_SYNCHRONIZED, ACC_NATIVE, and
ACC_ABSTRACT.

At most one of ACC_PUBLIC, ACC_PROTECTED, and ACC_PRIVATE can be set for any
method.

name_index

constant_pool[name_index] is a CONSTANT_Utf8 string giving the name of the
method.

signature_index

constant_pool[signature_index]is a CONSTANT_Utf8 string giving the signature of
the field. See the section “Signatures” for more information on signatures.

attributes_count

This value indicates the number of additional attributes about this field.

attributes

A field can have any number of optional attributes associated with it. Each attribute has a
name, and other additional information. Currently, the only field attributes recognized are the
“Code” and “Exceptions” attributes, which describe the bytecodes that are executed to
perform this method, and the Java Exceptions which are declared to result from the execution
of the method, respectively.

Any other attributes are skipped.

2.6 Attributes

Attributes are used at several different places in the class format. All attributes have the following format:

GenericAttribute_info {
u2 attribute_name;
u4 attribute_length;
u1 info[attribute_length];

}

The attribute_name is a 16-bit index into the class’s constant pool; the value of
constant_pool[attribute_name] is a CONSTANT_Utf8 string giving the name of the attribute. The
field attribute_length indicates the length of the subsequent information in bytes. This length does not
include the six bytes of the attribute_name and attribute_length.

In the following text, whenever we allow attributes, we give the name of the attributes that are currently
understood. In the future, more attributes will be added. Class file readers are expected to skip over and ignore
the information in any attribute they do not understand.

August 22, 1995 Java Virtual Machine Specification 21

2.6.1 SourceFile

The “SourceFile” attribute has the following format:

SourceFile_attribute {
u2 attribute_name_index;
u4 attribute_length;
u2 sourcefile_index;

}

attribute_name_index

constant_pool[attribute_name_index] is the CONSTANT_Utf8 string
"SourceFile".

attribute_length

The length of a SourceFile_attribute must be 2.

sourcefile_index

constant_pool[sourcefile_index] is a CONSTANT_Utf8 string giving the source file
from which this class file was compiled.

2.6.2 ConstantValue

The “ConstantValue” attribute has the following format:

ConstantValue_attribute {
u2 attribute_name_index;
u4 attribute_length;
u2 constantvalue_index;

}

attribute_name_index

constant_pool[attribute_name_index] is the CONSTANT_Utf8 string
"ConstantValue".

attribute_length

The length of a ConstantValue_attribute must be 2.

constantvalue_index

constant_pool[constantvalue_index]gives the constant value for this field.

The constant pool entry must be of a type appropriate to the field, as shown by the following
table:

2.6.3 Code

The “Code” attribute has the following format:

long CONSTANT_Long

float CONSTANT_Float

double CONSTANT_Double

int, short, char, byte, boolean CONSTANT_Integer

22 Java Virtual Machine Specification August 22, 1995

Code_attribute {
u2 attribute_name_index;
u4 attribute_length;
u2 max_stack;
u2 max_locals;
u4 code_length;
u1 code[code_length];
u2 exception_table_length;
{ u2 start_pc;

u2 end_pc;
u2 handler_pc;
u2 catch_type;

} exception_table[exception_table_length];
u2 attributes_count;
attribute_info attributes[attribute_count];

}

attribute_name_index

constant_pool[attribute_name_index] is the CONSTANT_Utf8 string "Code".

attribute_length

This field indicates the total length of the “Code” attribute, excluding the initial six bytes.

max_stack

Maximum number of entries on the operand stack that will be used during execution of this
method. See the other chapters in this spec for more information on the operand stack.

max_locals

Number of local variable slots used by this method. See the other chapters in this spec for
more information on the local variables.

code_length

The number of bytes in the virtual machine code for this method.

code

These are the actual bytes of the virtual machine code that implement the method. When read
into memory, if the first byte of code is aligned onto a multiple-of-four boundary the the
tableswitch and tablelookup opcode entries will be aligned; see their description for
more information on alignment requirements.

exception_table_length

The number of entries in the following exception table.

exception_table

Each entry in the exception table describes one exception handler in the code.

start_pc, end_pc

The two fields start_pc and end_pc indicate the ranges in the code at which the exception
handler is active. The values of both fields are offsets from the start of the code. start_pc is
inclusive. end_pc is exclusive.

handler_pc

This field indicates the starting address of the exception handler. The value of the field is an
offset from the start of the code.

August 22, 1995 Java Virtual Machine Specification 23

catch_type

If catch_type is nonzero, then constant_pool[catch_type] will be the class of
exceptions that this exception handler is designated to catch. This exception handler should
only be called if the thrown exception is an instance of the given class.

If catch_type is zero, this exception handler should be called for all exceptions.

attributes_count

This field indicates the number of additional attributes about code. The “Code” attribute can
itself have attributes.

attributes

A “Code” attribute can have any number of optional attributes associated with it. Each
attribute has a name, and other additional information. Currently, the only code attributes
defined are the “LineNumberTable” and “LocalVariableTable,” both of which contain
debugging information.

2.6.4 Exceptions Table

This table is used by compilers which indicate which Exceptions a method is declared to throw:

Exceptions_attribute {
u2 attribute_name_index;
u4 attribute_length;
u2 number_of_exceptions;
u2 exception_index_table[number_of_exceptions];

}

attribute_name_index

constant_pool[attribute_name_index] will be the CONSTANT_Utf8 string
"Exceptions".

attribute_length

This field indicates the total length of the Exceptions_attribute, excluding the initial six bytes.

number_of_exceptions

This field indicates the number of entries in the following exception index table.

exception_index_table

Each value in this table is an index into the constant pool. For each table element
(exception_index_table[i] != 0, where 0 <= i < number_of_exceptions), then
constant_pool[exception_index+table[i]] is a Exception that this class is declared
to throw.

2.6.5 LineNumberTable

This attribute is used by debuggers and the exception handler to determine which part of the virtual machine
code corresponds to a given location in the source. The LineNumberTable_attribute has the following format:

24 Java Virtual Machine Specification August 22, 1995

LineNumberTable_attribute {
u2 attribute_name_index;
u4 attribute_length;
u2 line_number_table_length;
{ u2 start_pc;

u2 line_number;
} line_number_table[line_number_table_length];

}

attribute_name_index

constant_pool[attribute_name_index] will be the CONSTANT_Utf8 string
"LineNumberTable".

attribute_length

This field indicates the total length of the LineNumberTable_attribute, excluding the initial six
bytes.

line_number_table_length

This field indicates the number of entries in the following line number table.

line_number_table

Each entry in the line number table indicates that the line number in the source file changes at
a given point in the code.

start_pc

This field indicates the place in the code at which the code for a new line in the source begins.
source_pc <<SHOULD THAT BE start_pc?>> is an offset from the beginning of the code.

line_number

The line number that begins at the given location in the file.

2.6.6 LocalVariableTable

This attribute is used by debuggers to determine the value of a given local variable during the dynamic
execution of a method. The format of the LocalVariableTable_attribute is as follows:

LocalVariableTable_attribute {
u2 attribute_name_index;
u4 attribute_length;
u2 local_variable_table_length;
{ u2 start_pc;

u2 length;
u2 name_index;
u2 signature_index;
u2 slot;

} local_variable_table[local_variable_table_length];
}

attribute_name_index

constant_pool[attribute_name_index] will be the CONSTANT_Utf8 string
"LocalVariableTable".

attribute_length

This field indicates the total length of the LineNumberTable_attribute, excluding the initial six
bytes.

August 22, 1995 Java Virtual Machine Specification 25

local_variable_table_length

This field indicates the number of entries in the following local variable table.

local_variable_table

Each entry in the local variable table indicates a code range during which a local variable has a
value. It also indicates where on the stack the value of that variable can be found.

start_pc, length

The given local variable will have a value at the code between start_pc and start_pc +
length. The two values are both offsets from the beginning of the code.

name_index, signature_index

constant_pool[name_index]and constant_pool[signature_index] are
CONSTANT_Utf8 strings giving the name and signature of the local variable.

slot

The given variable will be the slotth local variable in the method’s frame.

26 Java Virtual Machine Specification August 22, 1995

August 22, 1995 Java Virtual Machine Specification 27

3 The Virtual Machine Instruction Set

3.1 Format for the Instructions

Java Virtual Machine instructions are represented in this document by an entry of the following form.

instruction name
Short description of the instruction

Stack: …., value1, value2 ⇒ ..., value3

A longer description that explains the functions of the instruction and indicates any exceptions that
might be thrown during execution.

Each line in the syntax diagram represents a single 8-bit byte.

Operations of the Java Virtual Machine most often take their operands from the stack and put their results
back on the stack. As a convention, the descriptions do not usually mention when the stack is the source or
destination of an operation, but will always mention when it is not. For instance, the iload instruction has the
short description “Load integer from local variable.” Implicitly, the integer is loaded onto the stack. The iadd
instruction is described as “Integer add”; both its source and destination are the stack.

Instructions that do not affect the control flow of a computation may be assumed to always advance the virtual
machine pc to the opcode of the following instruction. Only instructions that do affect control flow will
explicitly mention the effect they have on pc.

3.2 Pushing Constants onto the Stack

bipush
Push one-byte signed integer

Stack: ... => ..., value

byte1 is interpreted as a signed 8-bit value. This value is expanded to an integer and pushed onto the
operand stack.

Syntax:

opcode = number

operand1

operand2

...

Syntax:

bipush = 16

byte1

28 Java Virtual Machine Specification August 22, 1995

sipush
Push two-byte signed integer

Stack: ... => ..., item

byte1 and byte2 are assembled into a signed 16-bit value. This value is expanded to an integer and
pushed onto the operand stack.

ldc1
Push item from constant pool

Stack: ... => ..., item

indexbyte1 is used as an unsigned 8-bit index into the constant pool of the current class. The item at that
index is resolved and pushed onto the stack. If a String is being pushed and there isn’t enough
memory to allocate space for it then an OutOfMemoryError is thrown.

Note: A String push results in a reference to an object; what other constants do, and explain this
somewhere here.

ldc2
Push item from constant pool

Stack: ... => ..., item

indexbyte1 and indexbyte2 are used to construct an unsigned 16-bit index into the constant pool of the
current class. The item at that index is resolved and pushed onto the stack. If a String is being
pushed and there isn’t enough memory to allocate space for it then an OutOfMemoryError is
thrown.

Note: A String push results in a reference to an object; what other constants do, and explain this
somewhere here.

Syntax:

sipush = 17

byte1

byte2

Syntax:

ldc1 = 18

indexbyte1

Syntax:

ldc2 = 19

indexbyte1

indexbyte2

August 22, 1995 Java Virtual Machine Specification 29

ldc2w
Push long or double from constant pool

Stack: ... => ..., constant-word1, constant-word2

indexbyte1 and indexbyte2 are used to construct an unsigned 16-bit index into the constant pool of the
current class. The two-word constant at that index is resolved and pushed onto the stack.

aconst_null
Push null object reference

Stack: ... => ..., null

Push the null object reference onto the stack.

iconst_m1
Push integer constant –1

Stack: ... => ..., –1

Push the integer –1 onto the stack.

iconst_<n>
Push integer constant

Stack: ... => ..., <n>

Forms: iconst_0 = 3, iconst_1 = 4, iconst_2 = 5, iconst_3 = 6, iconst_4 = 7, iconst_5 = 8

Push the integer <n> onto the stack.

lconst_<l>
Push long integer constant

Stack: ... => ..., <l>-word1, <l>-word2

Forms: lconst_0 = 9, lconst_1 = 10

Push the long integer <l> onto the stack.

Syntax:

ldc2w = 20

indexbyte1

indexbyte2

Syntax:

aconst_null = 1

Syntax:

iconst_m1 = 2

Syntax:

iconst_<n>

Syntax:

lconst_<l>

30 Java Virtual Machine Specification August 22, 1995

fconst_<f>
Push single float

Stack: ... => ..., <f>

Forms: fconst_0 = 11, fconst_1 = 12, fconst_2 = 13

Push the single-precision floating point number <f> onto the stack.

dconst_<d>
Push double float

Stack: ... => ..., <d>-word1, <d>-word2

Forms: dconst_0 = 14, dconst_1 = 15

Push the double-precision floating point number <d> onto the stack.

3.3 Loading Local Variables Onto the Stack

iload
Load integer from local variable

Stack: ... => ..., value

The value of the local variable at vindex in the current Java frame is pushed onto the operand stack.

iload_<n>
Load integer from local variable

Stack: ... => ..., value

Forms: iload_0 = 26, iload_1 = 27, iload_2 = 28, iload_3 = 29

The value of the local variable at <n> in the current Java frame is pushed onto the operand stack.

This instruction is the same as iload with a vindex of <n>, except that the operand <n> is implicit.

Syntax:

fconst_<f>

Syntax:

dconst_<d>

Syntax:

iload = 21

vindex

Syntax:

iload_<n>

August 22, 1995 Java Virtual Machine Specification 31

lload
Load long integer from local variable

Stack: ... => ..., value-word1, value-word2

The value of the local variables at vindex and vindex+1 in the current Java frame is pushed onto the
operand stack.

lload_<n>
Load long integer from local variable

Stack: ... => ..., value-word1, value-word2

Forms: lload_0 = 30, lload_1 = 31, lload_2 = 32, lload_3 = 33

The value of the local variables at <n> and <n>+1 in the current Java frame is pushed onto the operand
stack.

This instruction is the same as lload with a vindex of <n>, except that the operand <n> is implicit.

fload
Load single float from local variable

Stack: ... => ..., value

The value of the local variable at vindex in the current Java frame is pushed onto the operand stack.

fload_<n>
Load single float from local variable

Stack: ... => ..., value

Forms: fload_0 = 34, fload_1 = 35, fload_2 = 36, fload_3 = 37

The value of the local variable at <n>in the current Java frame is pushed onto the operand stack.

This instruction is the same as fload with a vindex of <n>, except that the operand <n> is implicit.

Syntax:

lload = 22

vindex

Syntax:

lload_<n>

Syntax:

fload = 23

vindex

Syntax:

fload_<n>

32 Java Virtual Machine Specification August 22, 1995

dload
Load double float from local variable

Stack: ... => ..., value-word1, value-word2

The value of the local variables at vindex and vindex+1 in the current Java frame is pushed onto the
operand stack.

dload_<n>
Load double float from local variable

Stack: ... => ..., value-word1, value-word2

Forms: dload_0 = 38, dload_1 = 39, dload_2 = 40, dload_3 = 41

The value of the local variables at <n> and <n>+1 in the current Java frame is pushed onto the operand
stack.

This instruction is the same as dload with a vindex of <n>, except that the operand <n> is implicit.

aload
Load object reference from local variable

Stack: ... => ..., value

The value of the local variable at vindex in the current Java frame is pushed onto the operand stack.

aload_<n>
Load object reference from local variable

Stack: ... => ..., value

Forms: aload_0 = 42, aload_1 = 43, aload_2 = 44, aload_3 = 45

The value of the local variable at <n>in the current Java frame is pushed onto the operand stack.

This instruction is the same as aload with a vindex of <n>, except that the operand <n> is implicit.

Syntax:

dload = 24

vindex

Syntax:

dload_<n>

Syntax:

aload = 25

vindex

Syntax:

aload_<n>

August 22, 1995 Java Virtual Machine Specification 33

3.4 Storing Stack Values into Local Variables

istore
Store integer into local variable

Stack: ..., value => ...

value must be an integer. Local variable vindex in the current Java frame is set to value.

istore_<n>
Store integer into local variable

Stack: ..., value => ...

Forms: istore_0 = 59, istore_1 = 60, istore_2 = 61, istore_3 = 62

value must be an integer. Local variable <n> in the current Java frame is set to value.

This instruction is the same as istore with a vindex of <n>, except that the operand <n> is implicit.

lstore
Store long integer into local variable

Stack: ..., value-word1, value-word2 => ...

value must be a long integer. Local variables vindex and vindex+1 in the current Java frame are set to
value.

lstore_<n>
Store long integer into local variable

Stack: ..., value-word1, value-word2 => ...

Forms: lstore_0 = 63, lstore_1 = 64, lstore_2 = 65, lstore_3 = 66

value must be a long integer. Local variables <n> and <n>+1 in the current Java frame are set to value.

This instruction is the same as lstore with a vindex of <n>, except that the operand <n> is implicit.

Syntax:

istore = 54

vindex

Syntax:

istore_<n>

Syntax:

lstore = 55

vindex

Syntax:

lstore_<n>

34 Java Virtual Machine Specification August 22, 1995

fstore
Store single float into local variable

Stack: ..., value => ...

value must be a single-precision floating point number. Local variable vindex in the current Java frame
is set to value.

fstore_<n>
Store single float into local variable

Stack: ..., value => ...

Forms: fstore_0 = 67, fstore_1 = 68, fstore_2 = 69, fstore_3 = 70

value must be a single-precision floating point number. Local variable <n> in the current Java frame is
set to value.

This instruction is the same as fstore with a vindex of <n>, except that the operand <n> is implicit.

dstore
Store double float into local variable

Stack: ..., value-word1, value-word2 => ...

value must be a double-precision floating point number. Local variables vindex and vindex+1 in the
current Java frame are set to value.

dstore_<n>
Store double float into local variable

Stack: ..., value-word1, value-word2 => ...

Forms: dstore_0 = 71, dstore_1 = 72, dstore_2 = 73, dstore_3 = 74

value must be a double-precision floating point number. Local variables <n> and <n>+1 in the current
Java frame are set to value.

This instruction is the same as dstore with a vindex of <n>, except that the operand <n> is implicit.

Syntax:

fstore = 56

vindex

Syntax:

fstore_<n>

Syntax:

dstore = 57

vindex

Syntax:

dstore_<n>

August 22, 1995 Java Virtual Machine Specification 35

astore
Store object reference into local variable

Stack: ..., value => ...

value must be a return address or a reference to an object. Local variable vindex in the current Java
frame is set to value.

astore_<n>
Store object reference into local variable

Stack: ..., value => ...

Forms: astore_0 = 75, astore_1 = 76, astore_2 = 77, astore_3 = 78

value must be a return address or a reference to an object. Local variable <n> in the current Java frame
is set to value.

This instruction is the same as astore with a vindex of <n>, except that the operand <n> is implicit.

iinc
Increment local variable by constant

Stack: no change

Local variable vindex in the current Java frame must contain an integer. Its value is incremented by the
value const, where const is treated as a signed 8-bit quantity.

3.5 Wider index for Loading, Storing and Incrementing

wide
Wider index for accessing local variables in load, store and increment.

Stack: no change

This bytecode must precede one of the following bytecodes: iload, lload, fload, dload,
aload, istore, lstore, fstore, dstore, astore, iinc. The vindex of the following
bytecode and vindex2 from this bytecode are assembled into an unsigned 16-bit index to a local
variable in the current Java frame. The following bytecode operates as normal except for the use of this
wider index.

Syntax:

astore = 58

vindex

Syntax:

astore_<n>

Syntax:

iinc = 132

vindex

const

Syntax:

wide = 196

vindex2

36 Java Virtual Machine Specification August 22, 1995

3.6 Managing Arrays

newarray
Allocate new array

Stack: ..., size => result

size must be an integer. It represents the number of elements in the new array.

atype is an internal code that indicates the type of array to allocate. Possible values for atype are as
follows:

A new array of atype, capable of holding size elements, is allocated, and result is a reference to this new
object. Allocation of an array large enough to contain size items of atype is attempted. All elements of
the array are initialized to zero.

If size is less than zero, a NegativeArraySizeException is thrown. If there is not enough
memory to allocate the array, an OutOfMemoryError is thrown.

Syntax:

newarray = 188

atype

T_BOOLEAN 4

T_CHAR 5

T_FLOAT 6

T_DOUBLE 7

T_BYTE 8

T_SHORT 9

T_INT 10

T_LONG 11

August 22, 1995 Java Virtual Machine Specification 37

anewarray
Allocate new array of references to objects

Stack: ..., size=> result

size must be an integer. It represents the number of elements in the new array.

indexbyte1 and indexbyte2 are used to construct an index into the constant pool of the current class. The
item at that index is resolved. The resulting entry must be a class.

A new array of the indicated class type and capable of holding size elements is allocated, and result is a
reference to this new object. Allocation of an array large enough to contain size items of the given class
type is attempted. All elements of the array are initialized to null.

If size is less than zero, a NegativeArraySizeException is thrown. If there is not enough
memory to allocate the array, an OutOfMemoryError is thrown.

anewarray is used to create a single dimension of an array of object references. For example, to create

new Thread[7]

the following code is used:

bipush 7
anewarray <Class "java.lang.Thread">

anewarray can also be used to create the first dimension of a multi-dimensional array. For example,
the following array declaration:

new int[6][]

is created with the following code:

bipush 6
anewarray <Class "[I">

See CONSTANT_Class in the “Class File Format” chapter for information on array class names.

multianewarray
Allocate new multi-dimensional array

Stack: ..., size1 size2...sizen => result

Each size must be an integer. Each represents the number of elements in a dimension of the array.

indexbyte1 and indexbyte2 are used to construct an index into the constant pool of the current class. The
item at that index is resolved. The resulting entry must be an array class of one or more dimensions.

dimensions has the following aspects:

• It must be an integer ≥ 1.

• It represents the number of dimensions being created. It must be ≤ the number of dimensions of
the array class.

Syntax:

anewarray = 189

indexbyte1

indexbyte2

Syntax:

multianewarray = 197

indexbyte1

indexbyte2

dimensions

38 Java Virtual Machine Specification August 22, 1995

• It represents the number of elements that are popped off the stack. All must be integers greater
than or equal to zero. These are used as the sizes of the dimension. For example, to create

new int[6][3][]

the following code is used:

bipush 6
bipush 3
multianewarray <Class "[[[I"> 2

If any of the size arguments on the stack is less than zero, a NegativeArraySizeException is
thrown. If there is not enough memory to allocate the array, an OutOfMemoryError is thrown.

The result is a reference to the new array object.

Note: More explanation needed about how this is an array of arrays.

Note: It is more efficient to use newarray or anewarray when creating a single dimension.

See CONSTANT_Class in the “Class File Format” chapter for information on array class names.

arraylength
Get length of array

Stack: ..., objectref => ..., length

objectref must be a reference to an array object. The length of the array is determined and replaces
objectref on the top of the stack.

If the objectref is null, a NullPointerException is thrown.

iaload
Load integer from array

Stack: ..., arrayref, index => ..., value

arrayref must be a reference to an array of integers. index must be an integer. The integer value at
position number index in the array is retrieved and pushed onto the top of the stack.

If arrayref is null a NullPointerException is thrown. If index is not within the bounds of the
array an ArrayIndexOutOfBoundsException is thrown.

laload
Load long integer from array

Stack: ..., arrayref, index => ..., value-word1, value-word2

arrayref must be a reference to an array of long integers. index must be an integer. The long integer value
at position number index in the array is retrieved and pushed onto the top of the stack.

If arrayref is null a NullPointerException is thrown. If index is not within the bounds of the
array an ArrayIndexOutOfBoundsException is thrown.

Syntax:

arraylength = 190

Syntax:

iaload = 46

Syntax:

laload = 47

August 22, 1995 Java Virtual Machine Specification 39

faload
Load single float from array

Stack: ..., arrayref, index => ..., value

arrayref must be a reference to an array of single-precision floating point numbers. index must be an
integer. The single-precision floating point number value at position number index in the array is
retrieved and pushed onto the top of the stack.

If arrayref is null a NullPointerException is thrown. If index is not within the bounds of the
array an ArrayIndexOutOfBoundsException is thrown.

daload
Load double float from array

Stack: ..., arrayref, index => ..., value-word1, value-word2

arrayref must be a reference to an array of double-precision floating point numbers. index must be an
integer. The double-precision floating point number value at position number index in the array is
retrieved and pushed onto the top of the stack.

If arrayref is null a NullPointerException is thrown. If index is not within the bounds of the
array an ArrayIndexOutOfBoundsException is thrown.

aaload
Load object reference from array

Stack: ..., arrayref, index => ..., value

arrayref must be a reference to an array of references to objects. index must be an integer. The object
reference at position number index in the array is retrieved and pushed onto the top of the stack.

If arrayref is null a NullPointerException is thrown. If index is not within the bounds of the
array an ArrayIndexOutOfBoundsException is thrown.

baload
Load signed byte from array.

Stack: ..., arrayref, index => ..., value

arrayref must be a reference to an array of signed bytes. index must be an integer. The signed byte value
at position number index in the array is retrieved, expanded to an integer, and pushed onto the top of
the stack.

If arrayref is null a NullPointerException is thrown. If index is not within the bounds of the
array an ArrayIndexOutOfBoundsException is thrown.

Syntax:

faload = 48

Syntax:

daload = 49

Syntax:

aaload = 50

Syntax:

baload = 51

40 Java Virtual Machine Specification August 22, 1995

caload
Load character from array

Stack: ..., arrayref, index => ..., value

arrayref must be a reference to an array of characters. index must be an integer. The character value at
position number index in the array is retrieved, zero-extended to an integer, and pushed onto the top
of the stack.

If arrayref is null a NullPointerException is thrown. If index is not within the bounds of the
array an ArrayIndexOutOfBoundsException is thrown.

saload
Load short from array

Stack: ..., arrayref, index => ..., value

arrayref must be a reference to an array of short integers. index must be an integer. The ;signed short
integer value at position number index in the array is retrieved, expanded to an integer, and pushed
onto the top of the stack.

If arrayref is null, a NullPointerException is thrown. If index is not within the bounds of the
array an ArrayIndexOutOfBoundsException is thrown.

iastore
Store into integer array

Stack: ..., arrayref, index, value => ...

arrayref must be a reference to an array of integers, index must be an integer, and value an integer. The
integer value is stored at position index in the array.

If arrayref is null, a NullPointerException is thrown. If index is not within the bounds of the
array an ArrayIndexOutOfBoundsException is thrown.

lastore
Store into long integer array

Stack: ..., arrayref, index, value-word1, value-word2 => ...

arrayref must be a reference to an array of long integers, index must be an integer, and value a long
integer. The long integer value is stored at position index in the array.

If arrayref is null, a NullPointerException is thrown. If index is not within the bounds of the
array, an ArrayIndexOutOfBoundsException is thrown.

Syntax:

caload = 52

Syntax:

saload = 53

Syntax:

iastore = 79

Syntax:

lastore = 80

August 22, 1995 Java Virtual Machine Specification 41

fastore
Store into single float array

Stack: ..., arrayref, index, value => ...

arrayref must be an array of single-precision floating point numbers, index must be an integer, and
value a single-precision floating point number. The single float value is stored at position index in the
array.

If arrayref is null, a NullPointerException is thrown. If index is not within the bounds of the
array an ArrayIndexOutOfBoundsException is thrown.

dastore
Store into double float array

Stack: ..., arrayref, index, value-word1, value-word2 => ...

arrayref must be a reference to an array of double-precision floating point numbers, index must be an
integer, and value a double-precision floating point number. The double float value is stored at position
index in the array.

If arrayref is null, a NullPointerException is thrown. If index is not within the bounds of the
array an ArrayIndexOutOfBoundsException is thrown.

aastore
Store into object reference array

Stack: ..., arrayref, index, value => ...

arrayref must be a reference to an array of references to objects, index must be an integer, and value a
reference to an object. The object reference value is stored at position index in the array.

If arrayref is null, a NullPointerException is thrown. If index is not within the bounds of the
array, an ArrayIndexOutOfBoundsException is thrown.

The actual type of value must be conformable with the actual type of the elements of the array. For
example, it is legal to store an instance of class Thread in an array of class Object, but not vice
versa. (See the Java Language Specification for information on how to determine whether a object
reference is an instance of a class.) An ArrayStoreException is thrown if an attempt is made to
store an incompatible object reference.

Note: Mustn’t refer to the Java Language Specification; give semantics here.

Syntax:

fastore = 81

Syntax:

dastore = 82

Syntax:

aastore = 83

42 Java Virtual Machine Specification August 22, 1995

bastore
Store into signed byte array

Stack: ..., arrayref, index, value => ...

arrayref must be a reference to an array of signed bytes, index must be an integer, and value an integer.
The integer value is stored at position index in the array. If value is too large to be a signed byte, it is
truncated.

If arrayref is null, a NullPointerException is thrown. If index is not within the bounds of the
array an ArrayIndexOutOfBoundsException is thrown.

castore
Store into character array

Stack: ..., arrayref, index, value => ...

arrayref must be an array of characters, index must be an integer, and value an integer. The integer value
is stored at position index in the array. If value is too large to be a character, it is truncated.

If arrayref is null, a NullPointerException is thrown. If index is not within the bounds of [the
array an ArrayIndexOutOfBoundsException is thrown.

sastore
Store into short array

Stack: ..., array, index, value => ...

arrayref must be an array of shorts, index must be an integer, and value an integer. The integer value is
stored at position index in the array. If value is too large to be an short, it is truncated.

If arrayref is null, a NullPointerException is thrown. If index is not within the bounds of the
array an ArrayIndexOutOfBoundsException is thrown.

3.7 Stack Instructions

nop
Do nothing

Stack: no change

Do nothing.

Syntax:

bastore = 84

Syntax:

castore = 85

Syntax:

sastore = 86

Syntax:

nop = 0

August 22, 1995 Java Virtual Machine Specification 43

pop
Pop top stack word

Stack: ..., any => ...

Pop the top word from the stack.

pop2
Pop top two stack words

Stack: ..., any2, any1 => ...

Pop the top two words from the stack.

dup
Duplicate top stack word

Stack: ..., any => ..., any, any

Duplicate the top word on the stack.

dup2
Duplicate top two stack words

Stack: ..., any2, any1 => ..., any2, any1, any2, any1

Duplicate the top two words on the stack.

dup_x1
Duplicate top stack word and put two down

Stack: ..., any2, any1 => ..., any1, any2, any1

Duplicate the top word on the stack and insert the copy two words down in the stack.

Syntax:

pop = 87

Syntax:

pop2 = 88

Syntax:

dup = 89

Syntax:

dup2 = 92

Syntax:

dup_x1 = 90

44 Java Virtual Machine Specification August 22, 1995

dup2_x1
Duplicate top two stack words and put two down

Stack: ..., any3, any2, any1 => ..., any2, any1, any3, any2, any1

Duplicate the top two words on the stack and insert the copies two words down in the stack.

dup_x2
Duplicate top stack word and put three down

Stack: ..., any3, any2, any1 => ..., any1, any3, any2, any1

Duplicate the top word on the stack and insert the copy three words down in the stack.

dup2_x2
Duplicate top two stack words and put three down

Stack: ..., any4, any3, any2, any1 => ..., any2, any1, any4, any3, any2, any1

Duplicate the top two words on the stack and insert the copies three words down in the stack.

swap
Swap top two stack words

Stack: ..., any2, any1 => ..., any2, any1

Swap the top two elements on the stack.

3.8 Arithmetic Instructions

iadd
Integer add

Stack: ..., value1, value2 => ..., result

value1 and value2 must be integers. The values are added and are replaced on the stack by their integer
sum.

Syntax:

dup2_x1 = 93

Syntax:

dup_x2 = 91

Syntax:

dup2_x2 = 94

Syntax:

swap = 95

Syntax:

iadd = 96

August 22, 1995 Java Virtual Machine Specification 45

ladd
Long integer add

Stack: ..., value1-word1, value1-word2, value2-word1, value2-word2 => ..., result-word1, result-word2

value1 and value2 must be long integers. The values are added and are replaced on the stack by their
long integer sum.

fadd
Single floats add

Stack: ..., value1, value2 => ..., result

value1 and value2 must be single-precision floating point numbers. The values are added and are
replaced on the stack by their single-precision floating point sum.

dadd
Double floats add

Stack: ..., value1-word1, value1-word2, value2-word1, value2-word2 => ..., result-word1, result-word2

value1 and value2 must be double-precision floating point numbers. The values are added and are
replaced on the stack by their double-precision floating point sum.

isub
Integer subtract

Stack: ..., value1, value2 => ..., result

value1 and value2 must be integers. value2 is subtracted from value1, and both values are replaced on
the stack by their integer difference.

lsub
Long integer subtract

Stack: ..., value1-word1, value1-word2, value2-word1, value2-word2 => ..., result-word1, result-word2

value1 and value2 must be long integers. value2 is subtracted from value1, and both values are replaced
on the stack by their long integer difference.

Syntax:

ladd = 97

Syntax:

fadd = 98

Syntax:

dadd = 99

Syntax:

isub = 100

Syntax:

lsub = 101

46 Java Virtual Machine Specification August 22, 1995

fsub
Single float subtract

Stack: ..., value1, value2 => ..., result

value1 and value2 must be single-precision floating point numbers. value2 is subtracted from value1,
and both values are replaced on the stack by their single-precision floating point difference.

dsub
Double float subtract

Stack: ..., value1-word1, value1-word2, value2-word1, value2-word2 => ..., result-word1, result-word2

value1 and value2 must be double-precision floating point numbers. value2 is subtracted from value1,
and both values are replaced on the stack by their double-precision floating point difference.

imul
Integer multiply

Stack: ..., value1, value2 => ..., result

value1 and value2 must be integers. Both values are replaced on the stack by their integer product.

lmul
Long integer multiply

Stack: ..., value1-word1, value1-word2, value2-word1, value2-word2 => ..., result-word1, result-word2

value1 and value2 must be long integers. Both values are replaced on the stack by their long integer
product.

fmul
Single float multiply

Stack: ..., value1, value2 => ..., result

value1 and value2 must be single-precision floating point numbers. Both values are replaced on the
stack by their single-precision floating point product.

Syntax:

fsub = 102

Syntax:

dsub = 103

Syntax:

imul = 104

Syntax:

imul = 105

Syntax:

fmul = 106

August 22, 1995 Java Virtual Machine Specification 47

dmul
Double float multiply

Stack: ..., value1-word1, value1-word2, value2-word1, value2-word2 => ..., result-word1, result-word2

value1 and value2 must be double-precision floating point numbers. Both values are replaced on the
stack by their double-precision floating point product.

idiv
Integer divide

Stack: ..., value1, value2 => ..., result

value1 and value2 must be integers. value1 is divided by value2, and both values are replaced on the
stack by their integer quotient.

The result is truncated to the nearest integer that is between it and 0. An attempt to divide by zero
results in a “/ by zero” ArithmeticException being thrown.

ldiv
Long integer divide

Stack: ..., value1-word1, value1-word2, value2-word1, value2-word2 => ..., result-word1, result-word2

value1 and value2 must be long integers. value1 is divided by value2, and both values are replaced on
the stack by their long integer quotient.

The result is truncated to the nearest integer that is between it and 0. An attempt to divide by zero
results in a “/ by zero” ArithmeticException being thrown.

fdiv
Single float divide

Stack: ..., value1, value2 => ..., result

value1 and value2 must be single-precision floating point numbers. value1 is divided by value2, and
both values are replaced on the stack by their single-precision floating point quotient.

Divide by zero results in the quotient being NaN.

Syntax:

dmul = 107

Syntax:

idiv = 108

Syntax:

ldiv = 109

Syntax:

fdiv = 110

48 Java Virtual Machine Specification August 22, 1995

ddiv
Double float divide

Stack: ..., value1-word1, value1-word2, value2-word1, value2-word2 => ..., result-word1, result-word2

value1 and value2 must be double-precision floating point numbers. value1 is divided by value2, and
both values are replaced on the stack by their double-precision floating point quotient.

Divide by zero results in the quotient being NaN.

irem
Integer remainder

Stack: ..., value1, value2 => ..., result

value1 and value2 must both be integers. value1 is divided by value2, and both values are replaced on
the stack by their integer remainder.

An attempt to divide by zero results in a “/ by zero” ArithmeticException being thrown.

Note: need a description of the integer remainder semantics

lrem
Long integer remainder

Stack: ..., value1-word1, value1-word2, value2-word1, value2-word2 => ..., result-word1, result-word2

value1 and value2 must both be long integers. value1 is divided by value2, and both values are replaced
on the stack by their long integer remainder.

An attempt to divide by zero results in a “/ by zero” ArithmeticException being thrown.

Note: need a description of the integer remainder semantics

frem
Single float remainder

Stack: ..., value1, value2 => ..., result

value1 and value2 must both be single-precision floating point numbers. value1 is divided by value2,
and the quotient is truncated to an integer, and then multiplied by value2. The product is subtracted
from value1.The result, as a single-precision floating point number, replaces both values on the stack.
result = value1 - (integral_part(value1/value2) * value2), where integral_part() rounds to the nearest
integer, with a tie going to the even number.

An attempt to divide by zero results in NaN.

Note: gls to provide a better definition of the floating remainder semantics

Syntax:

ddiv = 111

Syntax:

irem = 112

Syntax:

lrem = 113

Syntax:

frem = 114

August 22, 1995 Java Virtual Machine Specification 49

drem
Double float remainder

Stack: ..., value1-word1, value1-word2, value2-word1, value2-word2 => ..., result-word1, result-word2

value1 and value2 must both be double-precision floating point numbers. value1 is divided by value2,
and the quotient is truncated to an integer, and then multiplied by value2. The product is subtracted
from value1.The result, as a double-precision floating point number, replaces both values on the stack.
result = value1 - (integral_part(value1/value2) * value2), where integral_part() rounds to the nearest
integer, with a tie going to the even number.

An attempt to divide by zero results in NaN.

Note: gls to provide a better definition of the floating remainder semantics

ineg
Integer negate

Stack: ..., value => ..., result

value must be an integer. It is replaced on the stack by its arithmetic negation.

lneg
Long integer negate

Stack: ..., value-word1, value-word2 => ..., result-word1, result-word2

value must be a long integer. It is replaced on the stack by its arithmetic negation.

fneg
Single float negate

Stack: ..., value => ..., result

value must be a single-precision floating point number. It is replaced on the stack by its arithmetic
negation.

dneg
Double float negate

Stack: ..., value-word1, value-word2 => ..., result-word1, result-word2

value must be a double-precision floating point number. It is replaced on the stack by its arithmetic
negation.

Syntax:

drem = 115

Syntax:

ineg = 116

Syntax:

lneg = 117

Syntax:

fneg = 118

Syntax:

dneg = 119

50 Java Virtual Machine Specification August 22, 1995

3.9 Logical Instructions

ishl
Integer shift left

Stack: ..., value1, value2 => ..., result

value1 and value2 must be integers. value1 is shifted left by the amount indicated by the low five bits of
value2. The integer result replaces both values on the stack.

ishr
Integer arithmetic shift right

Stack: ..., value1, value2 => ..., result

value1 and value2 must be integers. value1 is shifted right arithmetically (with sign extension) by the
amount indicated by the low five bits of value2. The integer result replaces both values on the stack.

iushr
Integer logical shift right

Stack: ..., value1, value2 => ..., result

value1 and value2 must be integers. value1 is shifted right logically (with no sign extension) by the
amount indicated by the low five bits of value2. The integer result replaces both values on the stack.

lshl
Long integer shift left

Stack: ..., value1-word1, value1-word2, value2 => ..., result-word1, result-word2

value1 must be a long integer and value2 must be an integer. value1 is shifted left by the amount
indicated by the low six bits of value2. The long integer result replaces both values on the stack.

lshr
Long integer arithmetic shift right

Stack: ..., value1-word1, value1-word2, value2 => ..., result-word1, result-word2

value1 must be a long integer and value2 must be an integer. value1 is shifted right arithmetically (with
sign extension) by the amount indicated by the low six bits of value2. The long integer result replaces
both values on the stack.

Syntax:

ishl = 120

Syntax:

ishr = 122

Syntax:

iushr = 124

Syntax:

lshl = 121

Syntax:

lshr = 123

August 22, 1995 Java Virtual Machine Specification 51

lushr
Long integer logical shift right

Stack: ..., value1-word1, value1-word2, value2-word1, value2-word2 => ..., result-word1, result-word2

value1 must be a long integer and value2 must be an integer. value1 is shifted right logically (with no
sign extension) by the amount indicated by the low six bits of value2. The long integer result replaces
both values on the stack.

iand
Integer boolean AND

Stack: ..., value1, value2 => ..., result

value1 and value2 must both be integers. They are replaced on the stack by their bitwise logical and
(conjunction).

land
Long integer boolean AND

Stack: ..., value1-word1, value1-word2, value2-word1, value2-word2 => ..., result-word1, result-word2

value1 and value2 must both be long integers. They are replaced on the stack by their bitwise logical
and (conjunction).

ior
Integer boolean OR

Stack: ..., value1, value2 => ..., result

value1 and value2 must both be integers. They are replaced on the stack by their bitwise logical or
(disjunction).

lor
Long integer boolean OR

Stack: ..., value1-word1, value1-word2, value2-word1, value2-word2 => ..., result-word1, result-word2

value1 and value2 must both be long integers. They are replaced on the stack by their bitwise logical or
(disjunction).

Syntax:

lushr = 125

Syntax:

iand = 126

Syntax:

land = 127

Syntax:

ior = 128

Syntax:

lor = 129

52 Java Virtual Machine Specification August 22, 1995

ixor
Integer boolean XOR

Stack: ..., value1, value2 => ..., result

value1 and value2 must both be integers. They are replaced on the stack by their bitwise exclusive or
(exclusive disjunction).

lxor
Long integer boolean XOR

Stack: ..., value1-word1, value1-word2, value2-word1, value2-word2 => ..., result-word1, result-word2

value1 and value2 must both be long integers. They are replaced on the stack by their bitwise exclusive
or (exclusive disjunction).

3.10 Conversion Operations

i2l
Integer to long integer conversion

Stack: ..., value => ..., result-word1, result-word2

value must be an integer. It is converted to a long integer. The result replaces value on the stack.

i2f
Integer to single float

Stack: ..., value => ..., result

value must be an integer. It is converted to a single-precision floating point number. The result replaces
value on the stack.

i2d
Integer to double float

Stack: ..., value => ..., result-word1, result-word2

value must be an integer. It is converted to a double-precision floating point number. The result
replaces value on the stack.

Syntax:

ixor = 130

Syntax:

lxor = 131

Syntax:

i2l = 133

Syntax:

i2f = 134

Syntax:

i2d = 135

August 22, 1995 Java Virtual Machine Specification 53

l2i
Long integer to integer

Stack: ..., value-word1, value-word2 => ..., result

value must be a long integer. It is converted to an integer by taking the low-order 32 bits. The result
replaces value on the stack.

l2f
Long integer to single float

Stack: ..., value-word1, value-word2 => ..., result

value must be a long integer. It is converted to a single-precision floating point number. The result
replaces value on the stack.

l2d
Long integer to double float

Stack: ..., value-word1, value-word2 => ..., result-word1, result-word2

value must be a long integer. It is converted to a double-precision floating point number. The result
replaces value on the stack.

f2i
Single float to integer

Stack: ..., value => ..., result

value must be a single-precision floating point number. It is converted to an integer. The result replaces
value on the stack. See The Java Language Specification for details on converting floating point numbers
to integers.

Note: Mustn’t refer to the Java Language Specification; give semantics here.

Syntax:

l2i = 136

Syntax:

l2f = 137

Syntax:

l2d = 138

Syntax:

f2i = 139

54 Java Virtual Machine Specification August 22, 1995

f2l
Single float to long integer

Stack: ..., value => ..., result-word1, result-word2

value must be a single-precision floating point number. It is converted to a long integer. The result
replaces value on the stack. See The Java Language Specification for details on converting floating point
numbers to integers.

Note: Mustn’t refer to the Java Language Specification; give semantics here.

f2d
Single float to double float

Stack: ..., value => ..., result-word1, result-word2

value must be a single-precision floating point number. It is converted to a double-precision floating
point number. The result replaces value on the stack.

d2i
Double float to integer

Stack: ..., value-word1, value-word2 => ..., result

value must be a double-precision floating point number. It is converted to an integer. The result
replaces value on the stack. See The Java Language Specification for details on converting floating point
numbers to integers.

Note: Mustn’t refer to the Java Language Specification; give semantics here.

d2l
Double float to long integer

Stack: ..., value-word1, value-word2 => ..., result-word1, result-word2

value must be a double-precision floating point number. It is converted to a long integer. The result
replaces value on the stack. See The Java Language Specification for details on converting floating point
numbers to integers.

Note: Mustn’t refer to the Java Language Specification; give semantics here.

Syntax:

f2l = 140

Syntax:

f2d = 141

Syntax:

d2i = 142

Syntax:

d2l = 143

August 22, 1995 Java Virtual Machine Specification 55

d2f
Double float to single float

Stack: ..., value-word1, value-word2 => ..., result

value must be a double-precision floating point number. It is converted to a single-precision floating
point number. If overflow occurs, the result must be infinity with the same sign as value. The result
replaces value on the stack.

int2byte
Integer to signed byte

Stack: ..., value => ..., result

value must be an integer. It is truncated to a signed 8-bit result, then sign extended to an integer. The
result replaces value on the stack.

int2char
Integer to char

Stack: ..., value => ..., result

value must be an integer. It is truncated to an unsigned 16-bit result, then zero extended to an integer.
The result replaces value on the stack.

int2short
Integer to short

Stack: ..., value => ..., result

value must be an integer. It is truncated to a signed 16-bit result, then sign extended to an integer. The
result replaces value on the stack.

Syntax:

d2f = 144

Syntax:

int2byte = 145

Syntax:

int2char = 146

Syntax:

int2short = 147

56 Java Virtual Machine Specification August 22, 1995

3.11 Control Transfer Instructions

ifeq
Branch if equal to 0

Stack: ..., value => ...

value must be an integer. It is popped from the stack. If value is zero, branchbyte1 and branchbyte2 are
used to construct a signed 16-bit offset. Execution proceeds at that offset from the address of this
instruction. Otherwise execution proceeds at the instruction following the ifeq.

ifnull
Branch if null

Stack: ..., value => ...

value must be a reference to an object. It is popped from the stack. If value is null, branchbyte1 and
branchbyte2 are used to construct a signed 16-bit offset. Execution proceeds at that offset from the
address of this instruction. Otherwise execution proceeds at the instruction following the ifnull.

iflt
Branch if less than 0

Stack: ..., value => ...

value must be an integer. It is popped from the stack. If value is less than zero, branchbyte1 and
branchbyte2 are used to construct a signed 16-bit offset. Execution proceeds at that offset from the
address of this instruction. Otherwise execution proceeds at the instruction following the iflt.

Syntax:

ifeq = 153

branchbyte1

branchbyte2

Syntax:

ifnull = 198

branchbyte1

branchbyte2

Syntax:

iflt = 155

branchbyte1

branchbyte2

August 22, 1995 Java Virtual Machine Specification 57

ifle
Branch if less than or equal to 0

Stack: ..., value => ...

value must be an integer. It is popped from the stack. If value is less than or equal to zero, branchbyte1
and branchbyte2 are used to construct a signed 16-bit offset. Execution proceeds at that offset from the
address of this instruction. Otherwise execution proceeds at the instruction following the ifle.

ifne
Branch if not equal to 0

Stack: ..., value => ...

value must be an integer. It is popped from the stack. If value is not equal to zero, branchbyte1 and
branchbyte2 are used to construct a signed 16-bit offset. Execution proceeds at that offset from the
address of this instruction. Otherwise execution proceeds at the instruction following the ifne.

ifnonnull
Branch if not null

Stack: ..., value => ...

value must be a reference to an object. It is popped from the stack. If value is not null, branchbyte1 and
branchbyte2 are used to construct a signed 16-bit offset. Execution proceeds at that offset from the
address of this instruction. Otherwise execution proceeds at the instruction following the
ifnonnull.

ifgt
Branch if greater than 0

Stack: ..., value => ...

value must be an integer. It is popped from the stack. If value is greater than zero, branchbyte1 and
branchbyte2 are used to construct a signed 16-bit offset. Execution proceeds at that offset from the
address of this instruction. Otherwise execution proceeds at the instruction following the ifgt.

Syntax:

ifle = 158

branchbyte1

branchbyte2

Syntax:

ifne = 154

branchbyte1

branchbyte2

Syntax:

ifnonnull = 199

branchbyte1

branchbyte2

Syntax:

ifgt = 157

branchbyte1

branchbyte2

58 Java Virtual Machine Specification August 22, 1995

ifge
Branch if greater than or equal to 0

Stack: ..., value => ...

value must be an integer. It is popped from the stack. If value is greater than or equal to zero,
branchbyte1 and branchbyte2 are used to construct a signed 16-bit offset. Execution proceeds at that
offset from the address of this instruction. Otherwise execution proceeds at the instruction following
the ifge.

if_icmpeq
Branch if integers equal

Stack: ..., value1, value2 => ...

value1 and value2 must be integers. They are both popped from the stack. If value1 is equal to value2,
branchbyte1 and branchbyte2 are used to construct a signed 16-bit offset. Execution proceeds at that
offset from the address of this instruction. Otherwise execution proceeds at the instruction following
the if_icmpeq.

if_icmpne
Branch if integers not equal

Stack: ..., value1, value2 => ...

value1 and value2 must be integers. They are both popped from the stack. If value1 is not equal to
value2, branchbyte1 and branchbyte2 are used to construct a signed 16-bit offset. Execution proceeds at
that offset from the address of this instruction. Otherwise execution proceeds at the instruction
following the if_icmpne.

if_icmplt
Branch if integer less than

Stack: ..., value1, value2 => ...

value1 and value2 must be integers. They are both popped from the stack. If value1 is less than value2,
branchbyte1 and branchbyte2 are used to construct a signed 16-bit offset. Execution proceeds at that

Syntax:

ifge = 156

branchbyte1

branchbyte2

Syntax:

if_icmpeq = 159

branchbyte1

branchbyte2

Syntax:

if_icmpne = 160

branchbyte1

branchbyte2

Syntax:

if_icmplt = 161

branchbyte1

branchbyte2

August 22, 1995 Java Virtual Machine Specification 59

offset from the address of this instruction. Otherwise execution proceeds at the instruction following
the if_icmplt.

if_icmpgt
Branch if integer greater than

Stack: ..., value1, value2 => ...

value1 and value2 must be integers. They are both popped from the stack. If value1 is greater than
value2, branchbyte1 and branchbyte2 are used to construct a signed 16-bit offset. Execution proceeds at
that offset from the address of this instruction. Otherwise execution proceeds at the instruction
following the if_icmpgt.

if_icmple
Branch if integer less than or equal to

Stack: ..., value1, value2 => ...

value1 and value2 must be integers. They are both popped from the stack. If value1 is less than or equal
to value2, branchbyte1 and branchbyte2 are used to construct a signed 16-bit offset. Execution proceeds at
that offset from the address of this instruction. Otherwise execution proceeds at the instruction
following the if_icmple.

if_icmpge
Branch if integer greater than or equal to

Stack: ..., value1, value2 => ...

value1 and value2 must be integers. They are both popped from the stack. If value1 is greater than or
equal to value2, branchbyte1 and branchbyte2 are used to construct a signed 16-bit offset. Execution
proceeds at that offset from the address of this instruction. Otherwise execution proceeds at the
instruction following the if_icmpge.

Syntax:

if_icmpgt = 163

branchbyte1

branchbyte2

Syntax:

if_icmple = 164

branchbyte1

branchbyte2

Syntax:

if_icmpge = 162

branchbyte1

branchbyte2

60 Java Virtual Machine Specification August 22, 1995

lcmp
Long integer compare

Stack: ..., value1-word1, value1-word2, value2-word1, value2-word1 => ..., result

value1 and value2 must be long integers. They are both popped from the stack and compared. If value1
is greater than value2, the integer value 1 is pushed onto the stack. If value1 is equal to value2, the value
0 is pushed onto the stack. If value1 is less than value2, the value –1 is pushed onto the stack.

fcmpl
Single float compare (–1 on NaN)

Stack: ..., value1, value2 => ..., result

value1 and value2 must be single-precision floating point numbers. They are both popped from the
stack and compared. If value1 is greater than value2, the integer value 1 is pushed onto the stack. If
value1 is equal to value2, the value 0 is pushed onto the stack. If value1 is less than value2, the value –1 is
pushed onto the stack.

If either value1 or value2 is NaN, the value –1 is pushed onto the stack.

fcmpg
Single float compare (1 on NaN)

Stack: ..., value1, value2 => ..., result

value1 and value2 must be single-precision floating point numbers. They are both popped from the
stack and compared. If value1 is greater than value2, the integer value 1 is pushed onto the stack. If
value1 is equal to value2, the value 0 is pushed onto the stack. If value1 is less than value2, the value –1 is
pushed onto the stack.

If either value1 or value2 is NaN, the value 1 is pushed onto the stack.

dcmpl
Double float compare (–1 on NaN)

Stack: ..., value1-word1, value1-word2, value2-word1, value2-word1 => ..., result

value1 and value2 must be double-precision floating point numbers. They are both popped from the
stack and compared. If value1 is greater than value2, the integer value 1 is pushed onto the stack. If
value1 is equal to value2, the value 0 is pushed onto the stack. If value1 is less than value2, the value –1 is
pushed onto the stack.

If either value1 or value2 is NaN, the value –1 is pushed onto the stack.

Syntax:

lcmp = 148

Syntax:

fcmpl = 149

Syntax:

fcmpg = 150

Syntax:

dcmpl = 151

August 22, 1995 Java Virtual Machine Specification 61

dcmpg
Double float compare (1 on NaN)

Stack: ..., value1-word1, value1-word2, value2-word1, value2-word1 => ..., result

value1 and value2 must be double-precision floating point numbers. They are both popped from the
stack and compared. If value1 is greater than value2, the integer value 1 is pushed onto the stack. If
value1 is equal to value2, the value 0 is pushed onto the stack. If value1 is less than value2, the value –1 is
pushed onto the stack.

If either value1 or value2 is NaN, the value 1 is pushed onto the stack.

if_acmpeq
Branch if object references are equal

Stack: ..., value1, value2 => ...

value1 and value2 must be references to objects. They are both popped from the stack. If the objects
refrerenced are not the same, branchbyte1 and branchbyte2 are used to construct a signed 16-bit offset.
Execution proceeds at that offset from the Address of this instruction. Otherwise execution proceeds at
the instruction following the if_acmpeq.

if_acmpne
Branch if object references not equal

Stack: ..., value1, value2 => ...

value1 and value2 must be references to objects. They are both popped from the stack. If the objecs
referenced are not the same, branchbyte1 and branchbyte2 are used to construct a signed 16-bit offset.
Execution proceeds at that offset from the address of this instruction. Otherwise execution proceeds at
the instruction following the if_acmpne.

goto
Branch always

Stack: no change

branchbyte1 and branchbyte2 are used to construct a signed 16-bit offset. Execution proceeds at that
offset from the address of this instruction.

Syntax:

dcmpg = 152

Syntax:

if_acmpeq = 165

branchbyte1

branchbyte2

Syntax:

if_acmpne = 166

branchbyte1

branchbyte2

Syntax:

goto = 167

branchbyte1

branchbyte2

62 Java Virtual Machine Specification August 22, 1995

goto_w
Branch always (wide index)

Stack: no change

branchbyte1, branchbyte2, branchbyte3, and branchbyte4 are used to construct a signed 32-bit offset.
Execution proceeds at that offset from the address of this instruction.

jsr
Jump subroutine

Stack: ... => ..., return-address

branchbyte1 and branchbyte2 are used to construct a signed 16-bit offset. The address of the instruction
immediately following the jsr is pushed onto the stack. Execution proceeds at the offset from the
address of this instruction.

Note: The jsr instruction is used in the implementation of Java’s finally keyword.

jsr_w
Jump subroutine (wide index)

Stack: ... => ..., return-address

branchbyte1, branchbyte2, branchbyte3, and branchbyte4 are used to construct a signed 32-bit offset. The
address of the instruction immediately following the jsr_w is pushed onto the stack. Execution
proceeds at the offset from the address of this instruction.

Syntax:

goto_w = 200

branchbyte1

branchbyte2

branchbyte3

branchbyte4

Syntax:

jsr = 168

branchbyte1

branchbyte2

Syntax:

jsr_w = 201

branchbyte1

branchbyte2

branchbyte3

branchbyte4

August 22, 1995 Java Virtual Machine Specification 63

ret
Return from subroutine

Stack: no change

Local variable vindex in the current Java frame must contain a return address. The contents of the local
variable are written into the pc.

Note that jsr pushes the address onto the stack, and ret gets it out of a local variable. This
asymmetry is intentional.

Note: The ret instruction is used in the implementation of Java’s finally keyword.

ret_w
Return from subroutine (wide index)

Stack: no change

vindexbyte1 and vindexbyte2 are assembled into an unsigned 16-bit index to a local variable in the
current Java frame. That local variable must contain a return address. The contents of the local variable
are written into the pc. See the ret instruction for more information.

3.12 Function Return

ireturn
Return integer from function

Stack: ..., value => [empty]

value must be an integer. The value value is pushed onto the stack of the previous execution
environment. Any other values on the operand stack are discarded. The interpreter then returns
control to its caller.

lreturn
Return long integer from function

Stack: ..., value-word1, value-word2 => [empty]

value must be a long integer. The value value is pushed onto the stack of the previous execution
environment. Any other values on the operand stack are discarded. The interpreter then returns
control to its caller.

Syntax:

ret = 169

vindex

Syntax:

ret_w = 209

vindexbyte1

vindexbyte2

Syntax:

ireturn = 172

Syntax:

lreturn = 173

64 Java Virtual Machine Specification August 22, 1995

freturn
Return single float from function

Stack: ..., value => [empty]

value must be a single-precision floating point number. The value value is pushed onto the stack of the
previous execution environment. Any other values on the operand stack are discarded. The interpreter
then returns control to its caller.

dreturn
Return double float from function

Stack: ..., value-word1, value-word2 => [empty]

value must be a double-precision floating point number. The value value is pushed onto the stack of the
previous execution environment. Any other values on the operand stack are discarded. The interpreter
then returns control to its caller.

areturn
Return object reference from function

Stack: ..., value => [empty]

value must be a reference to an object. The value value is pushed onto the stack of the previous
execution environment. Any other values on the operand stack are discarded. The interpreter then
returns control to its caller.

return
Return (void) from procedure

Stack: ... => [empty]

All values on the operand stack are discarded. The interpreter then returns control to its caller.

breakpoint
Stop and pass control to breakpoint handler

Stack: no change

Syntax:

freturn = 174

Syntax:

dreturn = 175

Syntax:

areturn = 176

Syntax:

return = 177

Syntax:

breakpoint = 202

August 22, 1995 Java Virtual Machine Specification 65

3.13 Table Jumping

tableswitch
Access jump table by index and jump

Stack: ..., index => ...

tableswitch is a variable length instruction. Immediately after the tableswitch instruction,
between zero and three 0’s are inserted as padding so that the next byte begins at an address that is a
multiple of four. After the padding follow a series of signed 4-byte quantities: default-offset, low, high,
and then high-low+1 further signed 4-byte offsets. The high-low+1 signed 4-byte offsets are treated as a
0-based jump table.

The index must be an integer. If index is less than low or index is greater than high, then default-offset is
added to the address of this instruction. Otherwise, low is subtracted from index, and the index-low’th
element of the jump table is extracted, and added to the address of this instruction.

Syntax:

tableswitch = 170

...0-3 byte pad...

default-offset1

default-offset2

default-offset3

default-offset4

low1

low2

low3

low4

high1

high2

high3

high4

...jump offsets...

66 Java Virtual Machine Specification August 22, 1995

lookupswitch
Access jump table by key match and jump

Stack: ..., key => ...

lookupswitch is a variable length instruction. Immediately after the lookupswitch instruction,
between zero and three 0’s are inserted as padding so that the next byte begins at an address that is a
multiple of four.

Immediately after the padding are a series of pairs of signed 4-byte quantities. The first pair is special.
The first item of that pair is the default offset, and the second item of that pair gives the number of
pairs that follow. Each subsequent pair consists of a match and an offset.

The key must be an integer. The integer key on the stack is compared against each of the matches. If it is
equal to one of them, the offset is added to the address of this instruction. If the key does not match any
of the matches, the default offset is added to the address of this instruction.

3.14 Manipulating Object Fields

putfield
Set field in object

Stack: ..., objectref, value => ...

OR

Stack: ..., objectref, value-word1, value-word2 => ...

indexbyte1 and indexbyte2 are used to construct an index into the constant pool of the current class. The
constant pool item will be a field reference to a class name and a field name. The item is resolved to a
field block pointer which has both the field width (in bytes) and the field offset (in bytes).

The field at that offset from the start of the object referenced by objectref will be set to the value on the
top of the stack.

This instruction deals with both 32-bit and 64-bit wide fields.

If objectref is null, a NullPointerException is generated.

If the specified field is a static field, an IncompatibleClassChangeError is thrown.

Syntax:

lookupswitch = 171

...0-3 byte pad...

default-offset1

default-offset2

default-offset3

default-offset4

npairs1

npairs2

npairs3

npairs4

..match-offset pairs..

Syntax:

putfield = 181

indexbyte1

indexbyte2

August 22, 1995 Java Virtual Machine Specification 67

getfield
Fetch field from object

Stack: ..., objectref => ..., value

OR

Stack: ..., objectref => ..., value-word1, value-word2

indexbyte1 and indexbyte2 are used to construct an index into the constant pool of the current class. The
constant pool item will be a field reference to a class name and a field name. The item is resolved to a
field block pointer which has both the field width (in bytes) and the field offset (in bytes).

objectref must be a reference to an object. The value at offset into the object referenced by objectref
replaces objectref on the top of the stack.

This instruction deals with both 32-bit and 64-bit wide fields.

If objectref is null, a NullPointerException is generated.

If the specified field is a static field, an IncompatibleClassChangeError is thrown.

putstatic
Set static field in class

Stack: ..., value => ...

OR

Stack: ..., value-word1, value-word2 => ...

indexbyte1 and indexbyte2 are used to construct an index into the constant pool of the current class. The
constant pool item will be a field reference to a static field of a class. That field will be set to have the
value on the top of the stack.

This instruction works for both 32-bit and 64-bit wide fields.

If the specified field is a dynamic field, an IncompatibleClassChangeError is thrown.

Syntax:

getfield = 180

indexbyte1

indexbyte2

Syntax:

putstatic = 179

indexbyte1

indexbyte2

68 Java Virtual Machine Specification August 22, 1995

getstatic
Get static field from class

Stack: ..., => ..., value

OR

Stack: ..., => ..., value-word1, value-word2

indexbyte1 and indexbyte2 are used to construct an index into the constant pool of the current class. The
constant pool item will be a field reference to a static field of a class.

This instruction deals with both 32-bit and 64-bit wide fields.

If the specified field is a dynamic field, an IncompatibleClassChangeError is generated.

3.15 Method Invocation

There are four instructions that implement method invocation.

invokevirtual Invoke an instance method of an object, dispatching based on the runtime (virtual) type
of the object. This is the normal method dispatch in Java.

invokenonvirtual Invoke an instance method of an object, dispatching based on the compile-time (non-
virtual) type of the object. This is used, for example, when the keyword super or the
name of a superclass is used as a method qualifier.

invokestatic Invoke a class (static) method in a named class.

invokeinterface Invoke a method which is implemented by an interface, searching the methods
implemented by the particular run-time object to find the appropriate method.

invokevirtual
Invoke instance method, dispatch based on run-time type

Stack: ..., objectref, [arg1, [arg2 ...]], ... => ...

The operand stack must contain a reference to an object and some number of arguments. indexbyte1
and indexbyte2 are used to construct an index into the constant pool of the current class. The item at
that index in the constant pool contains the complete method signature. A pointer to the object’s
method table is retrieved from the object reference. The method signature is looked up in the method
table. The method signature is guaranteed to exactly match one of the method signatures in the table.

The result of the lookup is an index into the method table of the named class, which is used with the
object’s dynamic type to look in the method table of that type, where a pointer to the method block for

Syntax:

getstatic = 178

indexbyte1

indexbyte2

Syntax:

invokevirtual = 182

indexbyte1

indexbyte2

August 22, 1995 Java Virtual Machine Specification 69

the matched method is found. The method block indicates the type of method (native,
synchronized, and so on) and the number of arguments expected on the operand stack.

If the method is marked synchronized the monitor associated with objectref is entered.

The objectref and arguments are popped off this method’s stack and become the initial values of the
local variables of the new method. Execution continues with the first instruction of the new method.

If the object reference on the operand stack is null, a NullPointerException is thrown. If
during the method invocation a stack overflow is detected, a StackOverflowError is thrown.

invokenonvirtual
Invoke instance method, dispatching based on compile-time type

Stack: ..., objectref, [arg1, [arg2 ...]], ... => ...

The operand stack must contain a reference to an object and some number of arguments. indexbyte1
and indexbyte2 are used to construct an index into the constant pool of the current class. The item at
that index in the constant pool contains a complete method signature and class. The method signature
is looked up in the method table of the class indicated. The method signature is guaranteed to exactly
match one of the method signatures in the table.

The result of the lookup is a method block. The method block indicates the type of method (native,
synchronized, and so on) and the number of arguments (nargs) expected on the operand stack.

If the method is marked synchronized the monitor associated with objectref is entered.

The objectref and arguments are popped off this method’s stack and become the initial values of the
local variables of the new method. Execution continues with the first instruction of the new method.

If the object reference on the operand stack is null, a NullPointerException is thrown. If
during the method invocation a stack overflow is detected, a StackOverflowError is thrown.

invokestatic
Invoke a class (static) method

Stack: ..., [arg1, [arg2 ...]], ... => ...

The operand stack must contain some number of arguments. indexbyte1 and indexbyte2 are used to
construct an index into the constant pool of the current class. The item at that index in the constant
pool contains the complete method signature and class. The method signature is looked up in the
method table of the class indicated. The method signature is guaranteed to exactly match one of the
method signatures in the class’s method table.

The result of the lookup is a method block. The method block indicates the type of method (native,
synchronized, and so on) and the number of arguments (nargs) expected on the operand stack.

If the method is marked synchronized the monitor associated with the class is entered.

The arguments are popped off this method’s stack and become the initial values of the local variables
of the new method. Execution continues with the first instruction of the new method.

If during the method invocation a stack overflow is detected, a StackOverflowError is thrown.

Syntax:

invokenonvirtual = 183

indexbyte1

indexbyte2

Syntax:

invokestatic = 184

indexbyte1

indexbyte2

70 Java Virtual Machine Specification August 22, 1995

invokeinterface
Invoke interface method

Stack: ..., objectref, [arg1, [arg2 ...]], ... => ...

The operand stack must contain a reference to an object and nargs-1 arguments. indexbyte1 and
indexbyte2 are used to construct an index into the constant pool of the current class. The item at that
index in the constant pool contains the complete method signature. A pointer to the object's method
table is retrieved from the object reference. The method signature is looked up in the method table.
The method signature is guaranteed to exactly match one of the method signatures in the table.

The result of the lookup is a method block. The method block indicates the type of method (native,
synchronized, and so on) but unlike invokevirtual and invokenonvirtual, the number of
available arguments (nargs) is taken from the bytecode.

If the method is marked synchronized the monitor associated with objectref is entered.

The objectref and arguments are popped off this method’s stack and become the initial values of the
local variables of the new method. Execution continues with the first instruction of the new method.

If the objectref on the operand stack is null, a NullPointerException is thrown. If during the
method invocation a stack overflow is detected, a StackOverflowError is thrown.

3.16 Exception Handling

athrow
Throw exception or error

Stack: ..., objectref => [undefined]

objectref must be a reference to an object which is a subclass of Throwable, which is thrown. The
current Java stack frame is searched for the most recent catch clause that catches this class or a
superclass of this class. If a matching catch list entry is found, the pc is reset to the address indicated
by the catch-list entry, and execution continues there.

If no appropriate catch clause is found in the current stack frame, that frame is popped and the object
is rethrown. If one is found, it contains the location of the code for this exception. The pc is reset to that
location and execution continues. If no appropriate catch is found in the current stack frame, that
frame is popped and the objectref is rethrown.

If objectref is null, then a NullPointerException is thrown instead.

Syntax:

invokeinterface = 185

indexbyte1

indexbyte2

nargs

reserved

Syntax:

athrow = 191

August 22, 1995 Java Virtual Machine Specification 71

3.17 Miscellaneous Object Operations

new
Create new object

Stack: ... => ..., objectref

indexbyte1 and indexbyte2 are used to construct an index into the constant pool of the current class. The
item at that index must be a class name that can be resolved to a class pointer, class. A new instance of
that class is then created and a reference to the object is pushed on the stack.

checkcast
Make sure object is of given type

Stack: ..., objectref => ..., objectref

indexbyte1 and indexbyte2 are used to construct an index into the constant pool of the current class. The
string at that index of the constant pool is presumed to be a class name which can be resolved to a class
pointer, class. objectref must be a reference to an object.

checkcast determines whether objectref can be cast to be a reference to an object of class class. A
null objectref can be cast to any class. Otherwise the referenced object must be an instance of class or
one of its superclasses. (See the Java Language Specification for information on how to determine
whether a objectref is an instance of a class.) If objectref can be cast to class execution proceeds at the next
instruction, and the objectref remains on the stack.

If objectref cannot be cast to class, a ClassCastException is thrown.

Note: Mustn’t refer to the Java Language Specification; give semantics here.

instanceof
Determine if an object is of given type

Stack: ..., objectref => ..., result

indexbyte1 and indexbyte2 are used to construct an index into the constant pool of the current class. The
string at that index of the constant pool is presumed to be a class name which can be resolved to a class
pointer, class. objectref must be a reference to an object.

instanceof determines whether objectref can be cast to be a reference to an object of the class class. This
instruction will overwrite objectref with 1 if objectref is an instance of class or one of its superclasses. (See
the Java Language Specification for information on how to determine whether a object reference is an
instance of a class.) Otherwise, objectref is overwritten by 0. If objectref is null, it’s overwritten by 0.

Note: Mustn’t refer to the Java Language Specification; give semantics here.

Syntax:

new = 187

indexbyte1

indexbyte2

Syntax:

checkcast = 192

indexbyte1

indexbyte2

Syntax:

instanceof = 193

indexbyte1

indexbyte2

72 Java Virtual Machine Specification August 22, 1995

3.18 Monitors

monitorenter
Enter monitored region of code

Stack: ..., objectref => ...

objectref must be a reference to an object.

The interpreter attempts to obtain exclusive access via a lock mechanism to objectref. If another thread
already has objectref locked, than the current thread waits until the object is unlocked. If the current
thread already has the object locked, then continue execution. If the object is not locked, then obtain an
exclusive lock.

If objectref is null, then a NullPointerException is thrown instead.

monitorexit
Exit monitored region of code

Stack: ..., objectref => ...

objectref must be a reference to an object.

The lock on the object released. If this is the last lock that this thread has on that object (one thread is
allowed to have multiple locks on a single object), then other threads that are waiting for the object to
be available are allowed to proceed.

If objectref is null, then a NullPointerException is thrown instead.

Syntax:

monitorenter = 194

Syntax:

monitorexit = 195

August 22, 1995 Java Virtual Machine Specificationn 73

Appendix A: An Optimization

The following set of pseudo-instructions suffixed by _quick are variants of Java virtual machine instructions.
They are used to improve the speed of interpreting bytecodes. They are not part of the virtual machine
specification or instruction set, and are invisible outside of an Java virtual machine implementation. However,
inside a virtual machine implementation they have proven to be an effective optimization.

A compiler from Java source code to the Java virtual machine instruction set emits only non-_quick
instructions. If the _quick pseudo-instructions are used, each instance of a non-_quick instruction with a
_quick variant is overwritten on execution by its _quick variant. Subsequent execution of that instruction
instance will be of the _quick variant.

In all cases, if an instruction has an alternative version with the suffix _quick, the instruction references the
constant pool. If the _quick optimization is used, each non-_quick instruction with a _quick variant
performs the following:

• Resolves the specified item in the constant pool

• Signals an error if the item in the constant pool could not be resolved for some reason

• Turns itself into the _quick version of the instruction. The instructions putstatic, getstatic,
putfield, and getfield each have two _quick versions.

• Performs its intended operation

This is identical to the action of the instruction without the _quick optimization, except for the additional step
in which the instruction overwrites itself with its _quick variant.

The _quick variant of an instruction assumes that the item in the constant pool has already been resolved,
and that this resolution did not generate any errors. It simply performs the intended operation on the resolved
item.

Note: some of the invoke methods only support a single-byte offset into the method table of the object; for
objects with 256 or more methods some invocations cannot be “quicked” with only these bytecodes. We also
need to define or change existing getfield and putfield bytecodes to support more than a byte of offset.

This Appendix doesn’t give the opcode values of the pseudo-instructions, since they are invisible and subject
to change.

A.1 Constant Pool Resolution

When the class is read in, an array constant_pool[] of size nconstants is created and assigned to a field
in the class. constant_pool[0] is set to point to a dynamically allocated array which indicates which fields
in the constant_pool have already been resolved. constant_pool[1] through
constant_pool[nconstants - 1] are set to point at the “type” field that corresponds to this constant
item.

When an instruction is executed that references the constant pool, an index is generated, and
constant_pool[0] is checked to see if the index has already been resolved. If so, the value of
constant_pool[index] is returned. If not, the value of constant_pool[index] is resolved to be the
actual pointer or data, and overwrites whatever value was already in constant_pool[index].

74 Java Virtual Machine Specification August 22, 1995

A.2 Pushing Constants onto the Stack (_quick variants)

ldc1_quick
Push item from constant pool onto stack

Stack: ... => ..., item

indexbyte1 is used as an unsigned 8-bit index into the constant pool of the current class. The item at that
index is pushed onto the stack.

ldc2_quick
Push item from constant pool onto stack

Stack: ... => ..., item

indexbyte1 and indexbyte2 are used to construct an index into the constant pool of the current class. The
constant at that index is resolved and the item at that index is pushed onto the stack.

ldc2w_quick
Push long integer or double float from constant pool onto stack

Stack: ... => ..., constant-word1, constant-word2

indexbyte1 and indexbyte2 are used to construct an index into the constant pool of the current class. The
constant at that index is pushed onto the stack.

Syntax:

ldc1_quick

indexbyte1

Syntax:

ldc2_quick

indexbyte1

indexbyte2

Syntax:

ldc2w_quick

indexbyte1

indexbyte2

August 22, 1995 Java Virtual Machine Specification 75

A.3 Managing Arrays (_quick variants)

anewarray_quick
Allocate new array of references to objects

Stack: ..., size => result

size must be an integer. It represents the number of elements in the new array.

indexbyte1 and indexbyte2 are are used to construct an index into the constant pool of the current class.
The entry must be a class.

A new array of the indicated class type and capable of holding size elements is allocated, and result is a
reference to this new array. Allocation of an array large enough to contain size items of the given class
type is attempted. All elements of the array are initialized to zero.

If size is less than zero, a NegativeArraySizeException is thrown. If there is not enough
memory to allocate the array, an OutOfMemoryError is thrown.

multianewarray_quick
Allocate new multi-dimensional array

Stack: ..., size1, size2, ...sizen => result

Each size must be an integer. Each represents the number of elements in a dimension of the array.

indexbyte1 and indexbyte2 are used to construct an index into the constant pool of the current class. The
resulting entry must be a class.

dimensions has the following aspects:

• It must be an integer ≥ 1.

• It represents the number of dimensions being created. It must be ≤ the number of dimensions of
the array class.

• It represents the number of elements that are popped off the stack. All must be integers greater
than or equal to zero. These are used as the sizes of the dimension.

If any of the size arguments on the stack is less than zero, a NegativeArraySizeException is
thrown. If there is not enough memory to allocate the array, an OutOfMemoryError is thrown.

The result is a reference to the new array object.

Note: More explanation needed about how this is an array of arrays.

Syntax:

anewarray_quick

indexbyte1

indexbyte2

Syntax:

multianewarray_quick

indexbyte1

indexbyte2

dimensions

76 Java Virtual Machine Specification August 22, 1995

A.4 Manipulating Object Fields (_quick variants)

putfield_quick
Set field in object

Stack: ..., objectref, value => ...

objectref must be a reference to an object. value must be a value of a type appropriate for the specified
field. offset is the offset for the field in that object. value is written at offset into the object. Both objectref
and value are popped from the stack.

If objectref is null, a NullPointerException is generated.

putfield2_quick
Set long integer or double float field in object

Stack: ..., objectref, value-word1, value-word2=> ...

objectref must be a reference to an object. value must be a value of a type appropriate for the specified
field. offset is the offset for the field in that object. value is written at offset into the object . Both objectref
and value are popped from the stack.

If objectref is null, a NullPointerException is generated.

getfield_quick
Fetch field from object

Stack: ..., objectref => ..., value

objectref must be a handle to an object. The value at offset into the object referenced by objectref replaces
objectref on the top of the stack.

If objectref is null, a NullPointerException is generated.

Syntax:

putfield_quick

offset

unused

Syntax:

putfield2_quick

offset

unused

Syntax:

getfield_quick

offset

unused

August 22, 1995 Java Virtual Machine Specification 77

getfield2_quick
Fetch field from object

Stack: ..., objectref => ..., value-word1, value-word2

objectref must be a handle to an object. The value at offset into the object referenced by objectref replaces
objectref on the top of the stack.

If objectref is null, a NullPointerException is generated.

putstatic_quick
Set static field in class

Stack: ..., value => ...

indexbyte1 and indexbyte2 are used to construct an index into the constant pool of the current class. The
constant pool item will be a field reference to a static field of a class. value must be the type appropriate
to that field. That field will be set to have the value value.

putstatic2_quick
Set static field in class

Stack: ..., value-word1, value-word2 => ...

indexbyte1 and indexbyte2 are used to construct an index into the constant pool of the current class. The
constant pool item will be a field reference to a static field of a class. That field must either be a long
integer or a double precision floating point number. value must be the type appropriate to that field.
That field will be set to have the value value.

getstatic_quick
Get static field from class

Stack: ..., => ..., value

indexbyte1 and indexbyte2 are used to construct an index into the constant pool of the current class. The
constant pool item will be a field reference to a static field of a class. The value of that field will replace
handle on the stack.

Syntax:

getfield2_quick

offset

unused

Syntax:

putstatic_quick

indexbyte1

indexbyte2

Syntax:

putstatic2_quick

indexbyte1

indexbyte2

Syntax:

getstatic_quick

indexbyte1

indexbyte2

78 Java Virtual Machine Specification August 22, 1995

getstatic2_quick
Get static field from class

Stack: ..., => ..., value-word1, value-word2

indexbyte1 and indexbyte2 are used to construct an index into the constant pool of the current class. The
constant pool item will be a field reference to a static field of a class. The field must be a long integer or
a double precision floating point number. The value of that field will replace handle on the stack

A.5 Method Invocation (_quick variants)

invokevirtual_quick
Invoke instance method, dispatching based on run-time type

Stack: ..., objectref, [arg1, [arg2 ...]] => ...

The operand stack must contain objectref, a reference to an object and nargs-1 arguments. The method
block at offset in the object’s method table, as determined by the object’s dynamic type, is retrieved.
The method block indicates the type of method (native, synchronized, etc.).

If the method is marked synchronized the monitor associated with the object is entered.

The base of the local variables array for the new Java stack frame is set to point to objectref on the stack,
making objectref and the supplied arguments (arg1, arg2, ...) the first nargs local variables of the new
frame. The total number of local variables used by the method is determined, and the execution
environment of the new frame is pushed after leaving sufficient room for the locals. The base of the
operand stack for this method invocation is set to the first word after the execution environment.
Finally, execution continues with the first instruction of the matched method.

If objectref is null, a NullPointerException is thrown. If during the method invocation a stack
overflow is detected, a StackOverflowError is thrown.

invokevirtualobject_quick
Invoke instance method of class java.lang.Object, specifically for benefit of arrays

Stack: ..., objectref, [arg1, [arg2 ...]] => ...

The operand stack must contain objectref, a reference to an object or to an array and nargs-1 arguments.
The method block at offset in java.lang.Object’s method table is retrieved. The method block
indicates the type of method (native, synchronized, etc.).

If the method is marked synchronized the monitor associated with handle is entered.

The base of the local variables array for the new Java stack frame is set to point to objectref on the stack,
making objectref and the supplied arguments (arg1, arg2, ...) the first nargs local variables of the new

Syntax:

getstatic2_quick

indexbyte1

indexbyte2

Syntax:

invokevirtual_quick

offset

nargs

Syntax:

invokevirtualobject_quick

offset

nargs

August 22, 1995 Java Virtual Machine Specification 79

frame. The total number of local variables used by the method is determined, and the execution
environment of the new frame is pushed after leaving sufficient room for the locals. The base of the
operand stack for this method invocation is set to the first word after the execution environment.
Finally, execution continues with the first instruction of the matched method.

If objectref is null, a NullPointerException is thrown. If during the method invocation a stack
overflow is detected, a StackOverflowError is thrown.

invokenonvirtual_quick
Invoke instance method, dispatching based on compile-time type

Stack: ..., objectref, [arg1, [arg2 ...]] => ...

The operand stack must contain objectref, a reference to an object and some number of arguments.
indexbyte1 and indexbyte2 are used to construct an index into the constant pool of the current class. The
item at that index in the constant pool contains a method slot index and a pointer to a class. The
method block at the method slot index in the indicated class is retrieved. The method block indicates
the type of method (native, synchronized, etc.) and the number of arguments (nargs) expected
on the operand stack.

If the method is marked synchronized the monitor associated with the object is entered.

The base of the local variables array for the new Java stack frame is set to point to objectref on the stack,
making objectref and the supplied arguments (arg1, arg2, ...) the first nargs local variables of the new
frame. The total number of local variables used by the method is determined, and the execution
environment of the new frame is pushed after leaving sufficient room for the locals. The base of the
operand stack for this method invocation is set to the first word after the execution environment.
Finally, execution continues with the first instruction of the matched method.

If objectref is null, a NullPointerException is thrown. If during the method invocation a stack
overflow is detected, a StackOverflowError is thrown.

invokestatic_quick
Invoke a class (static) method

Stack: ..., [arg1, [arg2 ...]] => ...

The operand stack must contain some number of arguments. indexbyte1 and indexbyte2 are used to
construct an index into the constant pool of the current class. The item at that index in the constant
pool contains a method slot index and a pointer to a class. The method block at the method slot index
in the indicated class is retrieved. The method block indicates the type of method (native,
synchronized, etc.) and the number of arguments (nargs) expected on the operand stack.

If the method is marked synchronized the monitor associated with the method’s class is entered.

The base of the local variables array for the new Java stack frame is set to point to the first argument on
the stack, making the supplied arguments (arg1, arg2, ...) the first nargs local variables of the new
frame. The total number of local variables used by the method is determined, and the execution
environment of the new frame is pushed after leaving sufficient room for the locals. The base of the

Syntax:

invokenonvirtual_quick

indexbyte1

indexbyte2

Syntax:

invokestatic_quick

indexbyte1

indexbyte2

80 Java Virtual Machine Specification August 22, 1995

operand stack for this method invocation is set to the first word after the execution environment.
Finally, execution continues with the first instruction of the matched method.

If the object handle on the operand stack is null, a NullPointerException is thrown. If during
the method invocation a stack overflow is detected, a StackOverflowError is thrown.

invokeinterface_quick
Invoke interface method

Stack: ..., objectref, [arg1, [arg2 ...]] => ...

The operand stack must contain objectref, a reference to an object, and nargs-1 arguments. idbyte1 and
idbyte2 are used to construct an index into the constant pool of the current class. The item at that index
in the constant pool contains the complete method signature. A pointer to the object’s method table is
retrieved from the object handle.

The method signature is searched for in the object’s method table. As a short-cut, the method signature
at slot guess is searched first. If that fails, a complete search of the method table is performed. The
method signature is guaranteed to exactly match one of the method signatures in the table.

The result of the lookup is a method block. The method block indicates the type of method (native,
synchronized, etc.) but the number of available arguments (nargs) is taken from the bytecode.

If the method is marked synchronized the monitor associated with handle is entered.

The base of the local variables array for the new Java stack frame is set to point to handle on the stack,
making handle and the supplied arguments (arg1, arg2, ...) the first nargs local variables of the new
frame. The total number of local variables used by the method is determined, and the execution
environment of the new frame is pushed after leaving sufficient room for the locals. The base of the
operand stack for this method invocation is set to the first word after the execution environment.
Finally, execution continues with the first instruction of the matched method.

If objectref is null, a NullPointerException is thrown. If during the method invocation a stack
overflow is detected, a StackOverflowError is thrown.

guess is the last guess. Each time through, guess is set to the method offset that was used.

A.6 Miscellaneous Object Operations (_quick variants)

new_quick
Create new object

Stack: ... => ..., objectref

indexbyte1 and indexbyte2 are used to construct an index into the constant pool of the current class. The
item at that index must be a class. A new instance of that class is then created and objectref, a reference
to that object is pushed on the stack.

Syntax:

invokeinterface_quick

idbyte1

idbyte2

nargs

guess

Syntax:

new_quick

indexbyte1

indexbyte2

August 22, 1995 Java Virtual Machine Specification 81

checkcast_quick
Make sure object is of given type

Stack: ..., objectref => ..., objectref

objectref must be a reference to an object. indexbyte1 and indexbyte2 are used to construct an index into
the constant pool of the current class. The object at that index of the constant pool must have already
been resolved.

checkcast then determines whether objectref can be cast to a reference to an object of class class. A
null reference can be cast to any class, and otherwise the superclasses of objectref’s type are searched
for class. If class is determined to be a superclass of objectref’s type, or if objectref is null, it can be cast to
objectref cannot be cast to class, a ClassCastException is thrown.

Note: here (and probably in other places) we assume casts don’t change the reference; this is
implementation dependent.

instanceof_quick
Determine if object is of given type

Stack: ..., objectref => ..., result

objectref must be a reference to an object. indexbyte1 and indexbyte2 are used to construct an index into
the constant pool of the current class. The item of class class at that index of the constant pool must
have already been resolved.

instanceof determines whether objectref can be cast to an object of the class class. A null objectref
can be cast to any class, and otherwise the superclasses of objectref’s type are searched for class. If class
is determined to be a superclass of objectref’s type, result is 1 (true). Otherwise, result is 0 (false). If
handle is null, result is 0 (false).

Syntax:

checkcast_quick

indexbyte1

indexbyte2

Syntax:

instanceof_quick

indexbyte1

indexbyte2

82 Java Virtual Machine Specification August 22, 1995

August 22, 1995 Java Virtual Machine Specification 83

aaload 39
aastore 41
aconst_null 29
aload 32
aload_<n> 32
anewarray 37
anewarray_quick 75
areturn 64
arraylength 38
astore 35
astore_<n> 35
athrow 70
baload 39
bastore 42
bipush 27
breakpoint 64
caload 40
castore 42
checkcast 71
checkcast_quick 81
d2f 55
d2i 54
d2l 54
dadd 45
daload 39
dastore 41
dcmpg 61
dcmpl 60
dconst_<d> 30
ddiv 48
dload 32
dload_<n> 32
dmul 47
dneg 49
drem 49
dreturn 64
dstore 34
dstore_<n> 34
dsub 46
dup 43
dup_x1 43
dup_x2 44
dup2 43
dup2_x1 44
dup2_x2 44
f2d 54
f2i 53
f2l 54
fadd 45

faload 39
fastore 41
fcmpg 60
fcmpl 60
fconst_<f> 30
fdiv 47
fload 31
fload_<n> 31
fmul 46
fneg 49
frem 48
freturn 64
fstore 34
fstore_<n> 34
fsub 46
getfield 67
getfield_quick 76
getfield2_quick 77
getstatic 68
getstatic_quick 77
getstatic2_quick 78
goto 61
goto_w 62
i2d 52
i2f 52
i2l 52
iadd 44
iaload 38
iand 51
iastore 40
iconst_<n> 29
iconst_m1 29
idiv 47
if_acmpeq 61
if_acmpne 61
if_icmpeq 58
if_icmpge 59
if_icmpgt 59
if_icmple 59
if_icmplt 58
if_icmpne 58
ifeq 56
ifge 58
ifgt 57
ifle 57
iflt 56
ifne 57
ifnonnull 57
ifnull 56

Index of Instructions

84 Java Virtual Machine Specification August 22, 1995

iinc 35
iload 30
iload_<n> 30
imul 46
ineg 49
instanceof 71
instanceof_quick 81
instruction name 27
int2byte 55
int2char 55
int2short 55
invokeinterface 70
invokeinterface_quick 80
invokenonvirtual 69
invokenonvirtual_quick 79
invokestatic 69
invokestatic_quick 79
invokevirtual 68
invokevirtual_quick 78
invokevirtualobject_quick 78
ior 51
irem 48
ireturn 63
ishl 50
ishr 50
istore 33
istore_<n> 33
isub 45
iushr 50
ixor 52
jsr 62
jsr_w 62
l2d 53
l2f 53
l2i 53
ladd 45
laload 38
land 51
lastore 40
lcmp 60
lconst_<l> 29
ldc1 28
ldc1_quick 74
ldc2 28
ldc2_quick 74
ldc2w 29
ldc2w_quick 74
ldiv 47
lload 31
lload_<n> 31
lmul 46
lneg 49

lookupswitch 66
lor 51
lrem 48
lreturn 63
lshl 50
lshr 50
lstore 33
lstore_<n> 33
lsub 45
lushr 51
lxor 52
monitorenter 72
monitorexit 72
multianewarray 37
multianewarray_quick 75
new 71
new_quick 80
newarray 36
nop 42
pop 43
pop2 43
putfield 66
putfield_quick 76
putfield2_quick 76
putstatic 67
putstatic_quick 77
putstatic2_quick 77
ret 63
ret_w 63
return 64
saload 40
sastore 42
sipush 28
swap 44
tableswitch 65
wide 35

